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ABSTRACT Classification in sparsely labeled networks is challenging to traditional neighborhood-based
methods due to the lack of labeled neighbors. In this paper, we propose a novel behavior-based collective
classification (BCC)method to improve the classification performance in sparsely labeled networks. In BCC,
nodes’ behavior features are extracted and used to build latent relationships between labeled nodes and
unknown ones. Since mining the latent links does not rely on the direct connection of nodes, decrease of
labeled neighbors will have minor effect on classification results. In addition, the BCC method can also be
applied to the analysis of networks with heterophily as the homophily assumption is no longer required.
Experiments on various public data sets reveal that the proposed method can obtain competing performance
in comparison with the other state-of-the-art methods either when the network is labeled sparsely or when
homophily is low in the network.

INDEX TERMS Behavior feature, sparsely labeled networks, collective classification, within-network
classification.

I. INTRODUCTION
Given a partially labeled network, in which labels of some
nodes are known, within-network classification aims to pre-
dict labels of the rest nodes. Due to the increasingly wide
applications in counterterrorism analysis [1], [2], fraud detec-
tion [3], [4] and product recommendations [5], [6] etc.,
within-network classification has received a lot of attention
in recent years.

Conventional classification methods assume the data is
independent and identically distributed (i.i.d.). Nevertheless,
in network data, the nodes are interconnected with each other,
making the label of nodes are correlated with not only its
own attributes, but also the label of neighbors [7]–[11]. For
example, wvRN [7], [8] predicts the label of unknown nodes
via a weighted average of the estimated class membership
of the node’s neighbors. In a range of real networks, wvRN
has shown to obtain a surprisingly good performance [7].
However, wvRN relies heavily on the homophily assumption,
i.e., nodes belonging to the same class tend to be linked with
each other [12], and thereby are limited in the analysis of net-
works where nodes are not clustered by the studied property.
Probabilistic relational models [9]–[11] can overcome this

limitation. In probabilistic relational models, by constructing
the dependence between connected nodes, the probability
of an unknown node’s label is conditioned not only on the
labels of its neighbor nodes, but also on all observed data
(i.e., network structure and all labeled nodes).

While the rapid development of information technology
has greatly improved our ability to collect data in recent
years, traditional methods of network classification are facing
new challenges: in the era of big data, substantial propor-
tion of nodes are typically unlabeled in many settings. For
such sparsely labeled networks, the neighbors of an unknown
node are mostly unlabeled as well [13]; consequently, many
neighborhood-basedmethods cannot achieve satisfied perfor-
mance for such kind of networks. For this reason, a lot of
efforts have been made recently in order to develop new tech-
niques for sparse labeling problem, such as semi-supervised
learning [14], [15], active learning [16]–[19] and latent link
mining [13], [20], [21].

All the above methods can handle the sparse labeling
problem to some extent, however, the interacting behavior
of nodes, which is important to the formation of network
structure, is not considered. In addition, as pointed in [21],
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when the number of nodes in one class is much larger than the
other class, unknown nodes are more likely to be classified as
the same category as the majority.

To overcome these limitations, we propose a novel behav-
ior based collective classification (BCC) method for network
data in this study. In the new method, firstly, we extract
the behavior feature of nodes in the network; then, instead
of including all labeled nodes in the classification process,
we screen valuable nodes which are most relevant for the
classification; finally, since latent links can be estimated
between unknown nodes and valuable nodes by analyzing
their behavior feature, collective classification is performed
based on the latent links to infer the class of unknown nodes.
Experiment reveals that the method performs competitively
on several public real-world datasets and can overcome the
challenge of classification in sparsely labeled networks and
networks with lower homophily.

The rest of the paper is organized as follows: We review
related existing work in Section II, and propose the behavior
based collective classification method in Section III. Design-
ing and realization of BCC are presented in Section IV, with
a focus on the behavior feature extraction, similarity analysis
and collective classification. Details of experimental setup are
introduced in Section V, and extensive experimental results
are demonstrated and discussed in Section VI, followed by
conclusion in Section VII.

II. RELATED WORK
A. SEMI-SUPERVISED LEARNING
Making use of both labeled and unlabeled data, semi-
supervised learning is an effectivemethod for classification in
sparsely labeled networks [22], [23]. One type of this method
is to design a classification function which is sufficiently
smooth with respect to the intrinsic structure collectively
revealed by labeled and unlabeled points [24]. Zhou et al. [24]
propose a simple iteration algorithm,which considered global
and local consistency by introducing a regularization parame-
ter. By modeling the network with constraint on label consis-
tency, Zhu et al. [25] propose a Gaussian random field (GRF)
method by introducing a harmonic function, of which
the value is the average of neighboring points. Another
type of semi-supervised learning methods is the graph-cut
method [26]–[28], which assumes that more closely con-
nected nodes tend to belong to the same category. The core
idea is to find a cut set with the minimum weight by using
different criteria. However, the high cost of computing often
lead to poor performance of the algorithm when applied in
large networks. Some other algorithms use random walk on
the network to obtain a simple and effective solution by
propagating labels from labeled nodes to unknown nodes.
Based on passaging time during random walks with bounded
lengths, Callut et al. [29] and Newman [30] introduce a novel
technique, called D-walks, to handle semi-supervised classi-
fication problems in large graphs. Zhou and Schlkopf [31]
define calculus on graphs by using spectral graph theory,
and propose a regularization framework for classification

problems on graphs. However, many semi-supervised learn-
ing methods rely heavily on the assumption that the net-
work exhibits homophily, i.e., nodes belonging to the same
class tend to be linked with each other [12]. Meanwhile,
the implementation of semi-supervised learning algorithm
often requires a large amount of matrix computation, and
thus is infeasible for processing large datasets [25]. Many
methods have been developed to overcome these limitations.
For example, Tong et al. propose a fast random walk with
restart algorithm [32] to improve the performance on large-
scale dataset. Lin et al. propose a highly scalable method,
called Multi-Rank-Walk (MRW), which requires only linear
computation time in accordance to the number of edges in
the network [12]. Mantrach et al. [33] design two iterative
algorithms which can be applied in networks with millions of
nodes to avoid the computation of the pairwise similarities
between nodes. Gallagher et al. [13] design an even-step
random walk with restart (Even-step RWR) algorithm, which
mitigates the dependence on network homophily effectively.

B. ACTIVE LEARNING
In active learning [34], the number of known labels required
for accurate learning is reduced by intelligently selecting to-
be-labeled nodes to achieve improved classification perfor-
mance in sparsely labeled networks. Lewis and Catlett [35]
propose a method based on uncertainty reduction, which
selects the data with lowest certainty for querying. However,
the method will fail when there are a certain number of
outliers. The outliers have high uncertainty in the network,
but getting their labels doesn’t help to inference the rest
data. To handle this limitation, Roy and McCallum [36]
design a method to determine the impact on the expected
error of each potential labeling request by using Monte Carlo
approach. In the active learning process, the feature of linked
data in the network can also be taken into account. Bilgic and
Getoor [18] propose several ways of adapting existing active
learning methods to network data. Macskassy [37] designs
a novel hybrid approach by using community detection and
social network analytic centrality measures to identify the
candidates for labeling. When network structure and node
attribute information are available, Bilgic et al. [19] apply
several classic active learning strategies such as disagree-
ment and clustering to select samples for labeling, which
has shown significant improvements over baseline methods.
Active learning is able to overcome the sparse labeling prob-
lem to some extent, but it still requires the participation of
experts and lacks an automatic learning process.

C. LATENT LINK MINING
In sparsely labeled networks, the neighbors of unknown
nodes are mostly unlabeled as well, so the key idea of latent
link mining is to find the relationship between labeled nodes
and unknown nodes. When the dataset is non-relational,
there are many methods [27], [38] which can transform
the data into a weighted network and estimate latent links.
For example,Wang and Zhang [39] create links by calculating
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similarity scores between pair of nodes, and each nodes
will link to the K instances that are most similar to them.
Recently, several novel techniques, which use only net-
work structure to mine latent links, are proposed. For
example, Gallagher et al. [13] use an even-step random
walk with restart (Even-step RWR) algorithm to estimate
latent links between the labeled nodes and unknown nodes.
Zhang et al. [21] apply several similarity-based link pre-
diction methods in sparsely labeled network classification.
By comparing the similarity of nodes, latent links can be
mined between labeled nodes and unknown nodes, and
link weights are calculated according to different similarity
indices. However, the inference of thesemethods are based on
information from all labeled nodes, i.e., without considering
the impact of noisy data or unrelated data. Therefore, when
the network becomes large, many unrelated nodes will be
included in the classification process and may reduce the
performance of algorithms.

In a sparsely labeled network, the labels of nodes are
indeed fewer, but the attributes of nodes are still sufficient.
Here we indicate the differences of label and attribute in a
network. Take webpage network for example, a webpage in
such network can be treated as a node, and an edge exits if
there is a hyperlink from one webpage to another. In this
situation, the category of a webpage can be treated as the
label, and the content of the webpage are treated as attribute.
From this point of view, the sparsely labeled problem can be
solved by using the attributes for classification. For instance,
we can build a local classifier based on node’s attributes, and
combine it with relational features to make prediction [7].
In this situation, the result of local classifier can be treated
as preprocessing result for the relational classifier, or as a
distinct classifier that makes separate prediction. Moreover,
in network data, Macskassy [20] tries to compare the sim-
ilarity of nodes based on their attributes. If the similarity
exceeds a certain threshold, a new link will be created. Then it
combines explicit links such as hyperlinks between webpages
and latent links to predict unknown nodes.

It can be seen that the attributes of nodes can improve
the performance in sparsely labeled networks to some extent.
However, the attributes information may not be accessed due
to the privacy and security in some situations. Therefore,
without losing generality, we build the BCC method as a
relational model that only utilized network structure and label
information. Moreover, if the attributes information is given,
it can be used to build a local classifier, and combined with
BCC to make prediction easily.

D. SOCIAL DIMENSIONS EXTRACTION
Network often consists of various relations, however most
existing approaches treat these relations as the same type and
lead to poor performance. In order to handle this problem,
Tang and Liu [40] propose a novel classification frame-
work, SocioDim, to learn a classifier based on social dimen-
sions extracted from network structure. Various methods
can be used to mine the social dimensions, for example,

FIGURE 1. Toy Example: a sparsely labeled network. The red and blue
colors represent the labels of nodes, and nodes with gray color are
unknown nodes.

Tang and Liu [40] choose spectral clustering to extract social
dimensions and use Support Vector Machine (SVM) for clas-
sification. Modularity maximization [41] can also be used to
calculate social dimensions, but the computation complexity
is too high to apply in large dataset. EdgeCluster [42] is
another effective method which uses an edge-centric k-means
clustering to obtain social dimensions. It has been shown to
perform comparably to theModularitymaximizationmethod,
with the added advantage of scaling to graphs which are too
large for spectral decomposition. Wang and Sukthankar [43]
use the same method to construct the social feature space
and estimate a node’s label based on its neighbors’ class
labels, the similarity between connected nodes, and its class
propagation probability.

As we will see in the next section, our method does not
make use of social dimension, but tries to extract the behavior
feature of each node to find the latent relationships in the
network. With these latent relationships, we can avoid mod-
eling various types of edges and handle various relations in
the classification process effectively.

III. METHOD
In this section, we will describe the intuition of behavior
based classification at first, and show that the behavior feature
is more discriminative than traditional similarity measures.
Then, the framework of our method is introduced in detail.

A. INTUITION
In sparsely labeled networks, the labels of nodes are much
fewer, making it difficult to leverage label dependencies
to make accurate prediction. Without considering the label
information, it can be found that the network structure can
still provide useful information. Therefore, most researches
focus on utilizing the network structure to predict unknown
nodes. For example, CN method [21] estimates the simi-
larity of nodes by local structure (the number of common
neighbors). However, it becomes ineffective when handling
the sparsely labeled network classification task in some
situations.

Figure 1 shows a sparsely labeled network, in which only
node a and node b are labeled and the task is to predict the
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FIGURE 2. Framework of BCC.

label of node u (the true color is ‘‘red’’). CNmethod considers
that node u has two common neighbors with node a, so the
similarity between node u and node a is 2. Then we can
find that the similarity between node u and node b is 2 as
well. In this situation, CN method cannot determine which
is the most similar node with u, and thus, leading to lower
performance.

Traditional methods consider the network structure is
fixed, and estimate the similarity of nodes by local or global
measures (such as common neighbors, random walk, etc.).
However, from the perspective of network evolution, the net-
work is generated by the interaction behavior of nodes. In the
generation process, the interaction behavior and label of
nodes may be of high correlation, i.e., nodes tend to connect
with other nodes based on their labels (such as interest,
gender, etc.). For instance, the persons with ‘‘pet’’ label tend
to follow veterinarian and pet photographer. An intuition is
that we can utilize similarity of behavior feature to predict
the label of nodes.

Considering the connection behaviors in Fig. 1, it can be
found that node u only connects with node c and node d ,
so does node b. In contrast, node a connects with three
nodes c, d and e. As it can be seen, the behavior features
of node u and node b are the same, our method tends to
treat node b as the most similar node with node u, and thus,
achieving more accurate results.

B. BEHAVIOR BASED COLLECTIVE CLASSIFICATION
Since behavior feature can provide a different kind of infor-
mation that may be useful in sparsely labeled networks,
we propose a novel Behavior-based Collective Classification
method (BCC) in this paper to handle the sparse labeling
problem. The process of BCC in network data consists of
four steps: behavior feature extraction, screening valuable
nodes, classification by voting and collective inference. The
framework is shown in Fig. 2.

As shown in Fig. 2, we assume that nodes may belong to
the same class if their behavior features are similar. There-
fore, given the adjacency matrix M of a network, we will
extract nodes’ behavior feature at first to obtain the feature
matrixM

′

, of which the i-th row vector is the behavior feature
of node i.

Instead of including all labeled nodes, BCC only allows the
most relevant nodes for classification to improve the perfor-
mance on sparsely labeled networks. So in the next, we screen
valuable nodes by using correlation analysis and similarity
analysis respectively. Given an unknown node u, we first
compare the correlation between u and each labeled node,
then, nodes with correlation coefficients exceeding a thresh-
old will be added into the valuable node set Vu. After that,
we compare the similarity between u and each node in Vu,
and add the top-K similar nodes into set V

′

u, which is then
used to classify the unknown node u by voting. It should be
noted that, our method is flexible to integrate other techniques
in each step, e.g., classification by voting can be replaced by
other classifiers, such as SVM, linear regression and so on.
Finally, in order to deal with challenges of classification in
extremely sparsely labeled network, we perform collective
inference, in which the newly labeled nodes will be added to
the labeled node set and used for inferring the rest unknown
nodes.

IV. IMPLEMENT
BCC method consists of four steps for classification, and
in this section, we introduce the implement of each step in
detail. Firstly, we will describe how to extract behavior fea-
ture, which has shown more discriminative ability in sparsely
labeled networks. In order to handle the imbalanced dataset,
we only allow the most relevant nodes in the classification
process by using correlation and similarity analysis. Then we
introduce the strategy of voting for classification. Collective
inference procedure is used to handle the extremely sparse
labeling problem, which is described afterwards. Finally,
the algorithm is given to show the details of our method.

A. BEHAVIOR FEATURE EXTRACTION
Letw(i, j) be the weight of the edge from node i to node j, then
the adjacency vector−→w i = {w(i, 1),w(i, 2), . . . ,w(i,N )} can
be used to describe the behavior pattern of node i. However,
it should be noted that Ewi is the observed value in the current
time, which may change by time with the evolution of net-
work. Therefore, instead of using Ewi, we need to extract more
stable behavior feature to be able to reflect nodes’ intrinsic
attribute.
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In the network generation process, we assume that each
node in the network has a certain probability to connect with
other nodes. The observed connection behaviors of nodes are
driven by the implicit individual-based probabilities, which
are stable and may reflect the nodes’ essential attributes.
Let p(i,j) be the connection probability for node i to connect
node j, then Epi =

{
p(i,1), p(i,2), . . . , p(i,N )

}
is the probability

distribution of node i to connect other nodes in the network,
which can be treated as the behavior feature of node i.

As the number of nodes is fixed in the network, the proba-
bility distribution of connecting behavior can be regarded as
a multinomial distribution. In order to integrate prior knowl-
edge and simplify calculations, we choose dirichlet distribu-
tion, which is conjugate with the multinomial distribution,
as prior distribution. Epi is node i’s probability distribution of
connecting behavior, which has a dirichlet prior distribution
∼ Dir(Epi|Eα) with hyperparameter Eα; and w(i, j) is the num-
ber of observed connections from nodes i to node j, which
follows a multinomial distribution ∼ Mult(w(i, j)|Epi). As it
can be seen, the latent behavior feature can be extracted by
maximizing the posterior.

Let Si be the set of nodes connected with node i and sm
be the m-th connected node in Si, let w(i, j) be the weight of
the edge from node i to node j, and p(i,j) be the probability
of connection from node i to node j, then we can calculate
node i’s probability distribution of connecting behavior Epi as
follows:

p(Epi | Si, Eα) =
p(Si | Epi)p(Epi | Eα)

p(Si, Eα)
(1)

=

∏M
m=1 p(sm | Epi)p(Epi | Eα)∫ ∏M
m=1 p(sm | Epi)p(Epi | Eα)dEpi

(2)

=

N∏
j=1

p(i,j)w(i,j) 1
1(Eα)p(i,j)

αj−1

∫ ∏M
m=1 p(sm | Epi)p(Epi | Eα)dEpi

(3)

=
1(Eα)

1(Eα + Ewi)

N∏
j=1

p(i,j)w(i,j)
p(i,j)αj−1

1(Eα)
(4)

=
1

1(Eα + Ewi)

N∏
j=1

p
w(i,j)+αj−1
(i,j) (5)

= Dir(Epi | Eα + Ewi), (6)

in which 1
1 (Eα) =

0 (
∑N

k=1 αk )∏N
k=1 0 (αk )

, p(i,j) =
w(i,j)+αj∑N

j=1 (w(i,j)+αj)
is the expectation of the Dirichlet distribution, and Epi ={
p(i,1), p(i,2), . . . , p(i,N )

}
is the extracted behavior feature of

node i.
It is worth noting that the behavior feature is very

similar to the term ‘‘degree distribution’’ in network lit-
erature, the difference is that, instead of calculating over-
all connection frequency distribution, in our method the
behavior feature is individual-based and the probability
vector Ep represents connection behavior feature of each
individual.

B. SCREEN VALUABLE NODES FOR CLASSIFICATION
The labeled nodes are much fewer in sparsely labeled net-
work, so traditional methods tend to utilize all the labeled
nodes in the classification process. However, involving unre-
lated nodes in the classification process will only bring noise
data and lead to poor performance.Moreover, when classes of
labeled nodes are imbalanced, unknown nodes will be more
likely to be labeled the same as the majority. To solve this
issue, we show how to find the most relevant nodes, from the
perspective of correlation and similarity of behavior feature,
to reduce the impact of noise data.

1) CORRELATION OF BEHAVIOR FEATURE
Correlation analysis is an important method to measure the
relationship between two observed variables. We assume that
nodes of the same class should have higher correlation of
their behavior feature. Therefore, given an unknown node u,
the labeled node set L, and Pearson correlation threshold P,
we can screen out the valuable node set Vu by:

Vu = {v|v ∈ L ∧ corr(v, u) > P} , (7)

where corr(v, u) represents pearson correlation value
between node v and u. corr(v, u) can be calculate by

corr (v, u) = 1
N−1

N∑
i=1

( vi−v̄sv
)( ui−ūsu

), where N is the number of

nodes in the network, v̄ is the mean value of node v’s behavior
feature vector, sv is the standard deviation of node v’s behav-
ior feature vector, and analogously for ū and su. Aswewill see
in the experiments, labeled nodes of higher correlation with
u will have bigger influence in the classification process.

TABLE 1. Summary of connection behaviors.

2) SIMILARITY OF BEHAVIOR FEATURE
Correlation analysis is able to discover the latent relationship
of behavior features, but not enough for finding the most
relevant nodes in weighted networks. For example, in Table 1,
it can be found that the connection behavior of node A
and node B are almost same, except subtle changes when
connecting node F. As we know, experimental datasets are
crawled from real-world networks. In the crawling process,
information may be lost inevitably, which means node A and
node B may have the same connection behaviors with node F
in real-world network. In this situation, it is obvious that the
connection behavior of node B is more similar with A com-
pared toC . However, by using the correlation analysis,C will
have a higher correlation value with A (corr(A,C) = 1,
corr(A,B) = 0.99).
In order to improve the ability to handle this problem,

we implement a similarity analysis procedure after the cor-
relation analysis. We assume that nodes of the same class
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should have more similar behavior features. Since nodes’
behavior features are expressed as probability distributions,
symmetric Kullback-Leibler (KL) divergence [44] can be
used to measure the similarity:

DsKL(i, j) =
1
2
[
N∑
n=1

p(i,n) ln
p(i,n)
p(j,n)

+

N∑
n=1

p(j,n) ln
p(j,n)
p(i,n)

]. (8)

Where p(i,j) is the probability of connection from node i to
node j.

A node with smaller KL divergence will indicate that it has
similar behavior feature to the unknown node and thus ismore
valuable for the classification. Therefore, given the unknown
node u, we calculate the similarity of node u with each node
in Vu, and add the top-K similar nodes to set V

′

u.
For the example in Table 1, by using similarity analy-

sis, we can find that the KL divergence between node B
and node A is much smaller (DsKL(A,B) = 0.000043724,
DsKL(A,C) = 0.0055), which identifies B as the more rele-
vant node.

C. BEHAVIOR BASED CLASSIFICATION BY
MAJORITY-VOTING
After the above screening process, the valuable node set V

′

u,
is then used to classify unknown nodes. We use the majority-
voting strategy, which means that the label of an unknown
node is determined by the class of nodes which belongs to
the majority in V

′

u:

C(u|V
′

u) = argmax
Cj

∑
x∈V ′u

I (C(x) = Cj), j = 1, · · · , J ,

(9)

in which C(u) represents the class of node u, J is the total
number of classes in the network, and Cj is the j-th class.
I (·) is a discriminant function such that when C(x) = Cj,
I (·) = 1 and otherwise I (·) = 0.

D. COLLECTIVE INFERENCE
In order to improve the classification performance in sparsely
labeled network, collective inference procedure is introduced
in our method, in which newly labeled nodes will be used
for inferring the rest unknown nodes. Consequently, as the
classification process goes on, the labeled node set expands
constantly and existing knowledge continues to accumulate
to guide subsequent classification process.

However, introducing collective inference process will
come with a new problem: unknown nodes that have been
labeled will affect subsequent prediction process, so labeling
is relevant to the order of how unknown nodes are classified.
To mitigate such effect, we propose an iteration strategy.
In the i-th iteration, the labeled node set Li will use the
labels at the end of the previous iteration. Then, each initial
unknown node will be classified by using behavior based
classification method and get a new label. If the node has
never been labeled in the previous iteration, it will be added

to Li; otherwise wewill update Li with the new label. The iter-
ation continues until labels of all initial unknown nodes stay
unchanged in Li or the maximum number of iterations is
reached.

This process inherits the idea of iterative classification (IC)
method [45]. However, instead of using local neighbors, our
method relies on latent links created by behavior feature.
Since we extract a few valuable nodes to participate in the
classification, it does not need to update numerous nodes in
each iteration and the process typically converges efficiently
in a limited number of iterations.

When the labeled data is very sparse, the performance of
traditional collective classification might be largely degraded
due to the lack of sufficient neighbors [13]. However, in our
method, latent links can be mined between labeled nodes and
unknown nodes by using behavior feature, even nodes do not
connect directly. It means that in our method, the label of
node u is only affected by valuable nodes in V

′

u, rather than
its local neighbors. Therefore, decrease of labeled neighbors
will have minor effect on classification performance, making
BCC more suitable for handling sparse labeling problem.
Moreover, we can see that the proposed method does not rely
on the homophily assumption, so it can be applied to network
with lower homophily as well.

Finally, the algorithm of BCC is presented in Table 2.

V. EXPERIMENTAL SETUP
A. DATASETS
We evaluate the proposed BCC method by comparing it with
other baseline methods for the classification performance on
the following real-world datasets.
1, Enron emails [46]. We choose 151 persons as nodes

in the network and retain 2235 edges connected between
these persons. 102 out of these 151 nodes are assigned a role
according to the role list [47], where 37 nodes are labeled
as ‘‘employee’’. The network is a small directed weighted
graph composed of email communication among users and
the experimental task is to identify the ‘‘employee’’ class.
2, WebKB [48]. WebKB is a dataset of webpages gathered

from different universities, in which nodes are webpages and
edges are hyperlinks. Each webpage is classified into one
of the five classes: ‘‘course, faculty, student, project, staff’’.
There are four networks in this data set: cornell, texas, wash-
ington andwisconsin, and the task is to identify the ‘‘student’’
webpage.
3, Cora [48].Cora is a citation network formed of 2708 sci-

entific publications and 5429 links. Each publication is clas-
sified into one of seven classes. The task is to identify the
‘‘Neural_Networks’’ class.
4, Citeseer [48]. Citeseer is a citation network consists

of 3312 scientific publications and 4732 links. Each publica-
tion is classified into one of six classes. The task is to identify
the ‘‘DB’’ class.

B. BASELINE METHODS
The following four representative baseline methods are
selected for comparison with the BCC method:
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TABLE 2. The algorithm of BCC.

TABLE 3. Statistics of the four networks in WebKB.

a: SIMILARITY-BASED CLASSIFICATION BY USING COMMON
NEIGHBORS (SC_CN) [21]
SC_CN is a popular technique to solve the sparse label-
ing problem. As one of the fundamental methods, Common
Neighbors method has been widely used for link predic-
tion [49], which utilized the number of common neighbors as
the similarity measure. Intuitively, this similarity measure can
be used to find similar nodes to predict the label of unknown
nodes. For each pair of nodes, x and y, SC_CN uses the
number of common neighbors to calculate a similar score
as sx,y. Given an unknown node, u, the total number of classes
in the network, J , and the j-th class Cj, the probability for u
belonging to Cj is:

p(Cj|u) =

∑
{v|label(v)=Cj} su,v∑
{v|label(v)6=∅} su,v

, j = 1, 2, . . . , J . (10)

The predicted label of node u is determined by the
largest p(Cj|u).

b: WEIGHTED-VOTE RELATIONAL NEIGHBOR (wvRN) [8]
wvRN is a recommended baseline method for comparison as
it has shown a surprisingly good performance in many real
world datasets [7]. Given an unknown node u, wvRN calcu-
lates the probability of each class c for node u as:

P(C(u) = c|Nu) =
1
Z

∑
j∈Nu

wu,j · P(C(j) = c|Nj), (11)

where C(u) represents the class of node u, Nu is the set of
nodes that are linked to node u, wu,j is the weight of the edge
between node u and node j, and Z is a normalization factor.

c: SPECTRALCLUSTERING [40]
Spectralclustering is a representative method for handling
network with heterophily. In SocioDim framework, spectral
clustering is used to extract latent social dimensions based on
the network structure. Then, by using social dimensions as
new features, it applies SVM to classify unknown nodes.

d: EDGECLUSTERING [42]
Edgeclustering also applies the SocioDim classification
framework, but it uses an edge-centric clustering scheme to
extract sparse social dimensions. Each edge is treated as one
data instance, and the connected nodes are corresponding fea-
tures. Then, the proposed k-means clustering algorithm can
be applied to partition edges into disjoint sets, with each set
representing one possible affiliation. Lastly, SVM is applied
to classify the unknown nodes.

C. EXPERIMENT DESIGN
1) PERFORMANCE MEASUREMENT
In the experiment, we use accuracy as an evaluation measure-
ment to compare the performance of different methods. The
dataset is divided into training set and testing set, where nodes
in the training set are labeled and nodes in the testing set are
unknown. Then we use the labeled nodes in the training set
to predict labels of nodes in the testing set.

For BCC, SC_CN and wvRN, there may be more than
one optimal result in the classification process. When this
phenomenon happens, we choose the label according to the
prior, i.e., the majority class in the training set.

2) TRAINING DATA AND TEST DATA
The ten-folder cross-validation method is used to parti-
tion the training data and test data. We first generate a
random order of the instances in the data set, and then
divide it into ten parts {d1, d2, . . . , d10} equally. Given the
proportion of labeled nodes: p, for each parts di, we use{
di, . . . , d1+(i−2+p×10) mod 10

}
as training data, and the rest
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(1 − p) × 10 parts as test data to calculate the accuracy Ai.
The average value of {A1, . . . ,A10} is treated as the accuracy
of a ten-folder cross-validation.

3) HANDLING UNDIRECTED GRAPH
Based on the assumption of the generative process, BCC can
extract behavior feature from directed weighted graph; when
the network is undirected, the extension of BCC method is
straightforward: given an undirected graphG, we assume that
undirected edge e(i, j) can be viewed as two directed edges,
respectively e

′

(i, j) and e
′

(j, i), with the same weight of e(i, j),
so we have w

′

(i, j) = w
′

(j, i) = w(i, j).
As we will see in the experiments, for undirected graphs,

BCC can still get satisfied classification result.

4) PARAMETERS OF BCC
There are three parameters in the BCC method, which are as
follows:

a: PEARSON CORRELATION COEFFICIENT THRESHOLD
P, which is used to screen valuable nodes from the perspec-
tive of correlation of the behavior feature. Given unknown
node u, the labeled nodes of higher correlation with
u (corr(v, u) > P) will be considered to be valuable nodes.

b: NUMBER OF MOST SIMILAR NODES
K , which is used to screen more valuable nodes from the per-
spective of similarity of the behavior feature. Given unknown
node u and Vu, the top-K similar nodes in Vu with will be
considered as more valuable nodes. As we have mentioned
in the previous sections, the similarity analysis is optional
when handing undirected networks. However, to maintain
consistency, we include this component in all the following
experiments.

c: HYPERPARAMETER
H , which is the parameter of Dirichlet prior distribution.
H is used to integrate prior knowledge and avoid over-fitting.
For simplicity, we choose symmetric dirichlet with a scalar
parameter H . A symmetric dirichlet is a dirichlet distribution
where all of the elements of the parameter vector have the
same value.

In the next section, we will evaluate the sensitivity of
our method to these parameters and discuss how to select
appropriate parameters in practice.

VI. RESULTS AND DISCUSSION
In this section, we first give an example to illustrate the
characteristics and advantages of BCCmethod in imbalanced
classification, and then compare the classification perfor-
mance on several public datasets. Finally, we analyze the
sensitivity of different parameters.

A. CASE STUDY FOR IMBALANCED CLASSIFICATION
In Fig. 1, we have shown that behavior feature can handle
sparse labeling problem with more discriminative ability.

FIGURE 3. A small network illustrating the fail of baseline methods when
handling imbalanced classification. The red and blue colors represent the
labels of nodes, and nodes with gray color are unknown nodes.

In this section, we use a case to indicate the advantage by
screening valuable nodes. When the network is imbalanced,
i.e., the majority class occupies much more nodes than the
other class, many traditional methods may fail. Take the
network in Fig. 3 for example, we need to predict the label
of node e (the true label is ‘‘red’’).

According to (10), we can get p(‘‘red’’) = 2/5 and
p(‘‘blue’’) = 3/5, so node e would be labeled as ‘‘blue’’ by
SC_CN. wvRN relies on the local neighborhood, i.e., the
labels of node b and node c, so it also tends to classify node
e as ‘‘blue’’. For spectralclustering and edgeclustering, since
the instances in the training set are imbalanced, they will tend
to classify node e as ‘‘blue’’ as well.

BCC can handle this problem effectively. In the network,
node e only connects with node b and node c, so does
node d . Therefore, the behavior features of node e and
node d are the same, which means that node d is the most
similar node with node e. In this situation, using a higher
value of P or a smaller value of K to reduce the impact
of noise data, BCC will predict the label of e as ‘‘red’’
correctly.

B. CLASSIFICATION RESULTS ON EMPIRICAL DATA
Here we present the experimental analysis of our method
on the four data sets introduced in the previous section.
As there are three types of data sets: a directed weighted
communication network (Enron), a network of webpages
with hyperlinks (WEBKB), and citation networks of academic
papers (Cora and Citeseer), we choose different parameters
for BCC accordingly.

For Enron data, since the average weight of edges is
high (22.6), in order to highlight the importance of observed
data, we choose a relatively small hyperparameter value,
H = 1. And then, we choose a smaller P and a larger K
(P = 0, K = 10) to reduce the impact of outlier data and
to allow more nodes to be included in the classification pro-
cess. ForWEBKB, Cora and Citeseer, which are unweighted
networks, the weight of edges can be regarded as 1, so we

VOLUME 5, 2017 12519



J. Xu et al.: BCC in Sparsely Labeled Networks

choose a small hyperparameter, H = 0.05, to highlight the
importance of observed data. There are fewer edges in these
networks, so the behavior feature extracted may not reflect
node’s essential attribute accurately. In order to handle this
problem, nodes in these networks need to be screened by
more strict criteria. Thereby, we choose a larger P and a
smaller K (P = 0.5, K = 5 for WEBKB, and P = 0.2,
K = 50 for Cora and Citeseer).
The spectralclustering and edgeclustering methods require

a latent social dimension parameter, d . To implement the
algorithm, we follow the study of Tang and Liu on preferred
dimensionality [40] and let d = 500 for Cora and Citeseer.
For WEBKB dataset, the optimal value of d is found after a
number of cross-validation tests (d = 50 in spectralclustering
and d = 5 in edgeclustering).
Under the above setting, the BCC method is then com-

pared with baseline methods for classification on the four
datasets. Since SC_CN, spectralclustering and edgecluster-
ing are made for undirected unweighted networks, we only
compare BCC with wvRN method on Enron data set. And
for WEBKB, Cora and Citeseer dataset, we transform them
to undirected networks by considering the edges to be undi-
rected and retaining the weight. Here we did not convert the
Enron dataset to undirected unweighted network, since we
aim to verify the classification ability of BCC on directed
weighted networks.

We gradually increase the proportion of labeled nodes from
10% to 90%. For each setting, we run 10 times ten-folder
cross-validation, and the average accuracy is recorded. The
performances of different methods are plotted in Fig. 4-6.

We can see that, on Enron dataset (Fig. 4), BCC has better
performance than wvRN when nodes are labeled sparsely
(< 50%), for example, when only 20% of nodes are labeled,
the classification accuracy for BCC is 3% higher than wvRN.
However, the accuracy for wvRN improves steadily and
exceeds BCCwhen the proportion of labeled nodes increases.

FIGURE 4. Classification result on Enron dataset.

Experiments on Cora and Citeseer (Fig. 5 a-b) yield
similar results: wvRN performs better at higher labeled
proportions, but with labeled proportion decreases, wvRN
cannot avoid the impact of sparse labeling, the classifica-
tion accuracy decreases significantly. Spectralclustering and
edgeclustering encounter the same problem, the accuracy
drops rapidly as the labeled proportion decreases. For BCC,
on contrary, the accuracy remains satisfactory even when the
labeled nodes decrease to less than 20%.

In all four data sets in WEBKB (Fig. 6 a-d), BCC pro-
duces competitive (yet the highest) accuracy with SC_CN
in the cornell and washington data, and the highest accu-
racy in the texas and wisconsin data, while SC_CN in the
most worse case, is 4% less accurate than BCC. wvRN per-
forms extremely poorly, the accuracy of BCC is higher than
wvRN from a low of 8%, to a high of 40%. The perfor-
mances of edgeclustering in washington is competitive, but
beyond that spectralclustering and edgeclustering produce
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FIGURE 5. Classification result on Cora and Citeseer dataset.
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FIGURE 6. Classification result on WebKB dataset.

unsatisfied result. Compared with BCC, edgeclustering is 5%
lower and spectralclustering is 10% lower in cornell, texas
and wisconsin data.
Two important conclusions can be summarized from the

above analysis:
Firstly, BCC method performs better in sparsely labeled

networks. As it can be seen, BCC produces competitive per-
formance in all the above real-world datasets, and it achieves
the highest accuracy when labeled nodes become sparse (less
than 50%). The reason is that wvRN predicts the unknown
nodes based on local neighbors, so as the labeled proportion
decreases, the performance will be largely degraded due to
the lack of sufficient labeled neighbors. Likewise, when the
labeled proportion is low, spectralclustering and edgecluster-
ing will also be affected since there will be fewer training
instances. SC_CN uses all labeled nodes for classification,
so the performance drops when labeled proportion decreases.
BCC, on the other hand, does not rely on local neighboring
nodes. It tries to mine latent links between all nodes and only
requires a few valuable nodes to make prediction, so it is
less affected when the labeled neighbors decrease. In addi-
tion, BCCmethod uses collective classification to accumulate
experience constantly in the classification process, making
the sparse labeling problem gradually ease and yielding better
result.

Secondly, BCC can obtain satisfied classification results
when homophily is low in the network. As pointed in [8],
we can find that the homophily is much lower in WEBKB
dataset. In all four networks, BCC handles classification task
effectively and produces the highest accuracy. In contrast,
wvRN relies on the homophily assumption to make predic-
tion, so it performs extremely poorly in WEBKB dataset.
SC_CN, spectralclustering and edgeclustering can overcome
heterophily problem to some extent because they do not
rely on direct neighbors. However, the scale of networks in
WEBKB are relatively small, which means that there will be
only a few labeled nodes in the training set, so methods with a
learning process (spectralclustering and edgeclustering) will
be affected and perform poorly in this situation. SC_CN does
not have a learning process, but in small networks, labeled
nodes may be imbalanced, so SC_CN, which relies on all the
labeled nodes for classification, will be affected and tend to
predict unlabeled nodes as majority. In contrast, by using the
top-K valuable nodes, BCC handles the problem effectively
and obtains satisfactory performance when homophily is low
in the network.

C. PARAMETER SENSITIVITY
In this section, we are going to discuss the impact of param-
eters for BCC. Three parameters, correlation coefficient
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FIGURE 7. Sensitivity to Pearson correlation coefficient threshold value, P.

threshold, number of most similar nodes, and hyperparameter
are tested and analyzed. wisconsin inWEBKB dataset, which
is a medium size network from above datasets, is used for the
following experiments.

1) PEARSON CORRELATION COEFFICIENT THRESHOLD
In order to evaluate the impact of P on classification results,
we choose the wisconsin dataset in WEBKB and fix K = 5,
H = 0.05. Then we vary the value of P (from 0 to 0.8) in the
experiment. Results are shown in Fig. 7.

When the value of P increases from 0 to 0.6, nodes
with high correlation are extracted and included in the
classification process, and the classification accuracy
improves constantly from about 50% to 70%. This suggests
that using correlation of behavior feature does improve the
classification performance. However, when P continues to
increase (higher than 0.6), we find that the classification
accuracy starts to decrease. This is because that extreme high
correlation filters out a lot of valuable nodes, and there will
be only a few nodes involved in the classification. In such
situations, results will be strongly affected by outliers and
begin to decline.

Therefore, in the implementation of BCC, we need to
choose the value of P carefully, such that, on the one hand,

to ensure nodes with high correlation to be involved in the
classification process; and on the other hand, to make sure
that valuable nodes won’t be filtered out by excessive high
threshold value. In practice, the optimal P depends on the
attribute of different data sets and can be determined by cross
validation.

2) NUMBER OF MOST SIMILAR NODES
In order to verify the impact of K, we choose the wis-
consin dataset in WEBKB and fix H = 0.05. In BCC
method, P and K are two parameters used to screen valu-
able nodes, so we want to find out how they affect each
other in the classification process. We select three dif-
ferent values of P (P = 0.5, P = 0.1, P = 0), and
vary the value of K in experiments. Results are shown
in Fig. 8.

When we set a larger value of P (P = 0.1 and P =
0.5), the classification accuracy are steady as K varies.
The reason is that when P is large, there will be only a
few nodes left for K to screen, which will make K have
minor impact on the result. In contrast, when P is small
(P = 0), many unrelated nodes may be involved in the
classification process. In this situation, setting different K
will affect the accuracy. As shown in Fig. 8-c, K has minor
impact on the accuracy when labeled proportion is low, this
is because wisconsin is a small dataset and there will be
only a few labeled nodes left after the correlation analysis.
However, when the labeled proportion increases (higher than
0.6), a small K may involve some outliers in the classifi-
cation process, leading to a lower classification accuracy.
If we choose a larger K, the impact of outliers will be rela-
tively small, and the method can achieve higher classification
accuracy.

In BCC, correlation analysis plays a role before similarity
analysis, therefore, we recommend selecting an appropriate
P at first, on this basis, a slightly larger K may achieve better
performance. However, K should not be larger than 10% of
the total number of nodes; otherwise it will include too much
noise data and may affect classification accuracy. It should
be noted that similarity analysis is introduced for handling
weighted network, so in unweighted network, this step can
be omitted or replaced by other measurements, which reveals
the flexibility of our method.

FIGURE 8. Sensitivity to number of most similar nodes, K.
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FIGURE 9. Sensitivity to hyperparameter, H.

3) HYPERPARAMETER
Using prior distribution is a basic Bayesian approach to
integrate prior knowledge and avoid over-fitting. In order to
evaluate the impact of H, we choose the wisconsin dataset in
WEBKB and fix K = 5. In the above discussion, we already
see that the setting of P will affect classification results,
therefore, in order to verify the impact of H in different cases,
we choose two different values of P (P= 0.1, P= 0), and vary
the value of H in the experiment. Results are shown in Fig. 9.

We can see that the value of H has minor impact
on classification accuracy for different value of P, while
smaller H achieves slightly better results. This is because in
unweighted networks (wisconsin), the weight of each edge
can be regarded as 1, a small H will be able to highlight the
importance of observed data.

Therefore, in the experiment, we need to choose appropri-
ate value of H according to the observed data. In order to
highlight the role of observed data, it will be more appropriate
to select 0.01-0.1 in unweighted networks. While in weighted
networks, setting H to be 1/100-1/10 of average weight of
edges will be more appropriate.

VII. CONCLUSION
In order to improve classification accuracy in sparsely labeled
networks, we propose a novel behavior based collective clas-
sification method, BCC, in this study. In BCC, the behavior
feature of nodes is extracted for classification, which has
shown more discriminative ability to traditional methods.
Then, instead of using all the labeled nodes, we screen
the most-relevant nodes according to the calculation of
correlation and similarity, which can overcome the effects
of noise and imbalanced dataset. Finally, collective infer-
ence is introduced to utilize both labeled nodes and unla-
beled nodes, which can relieve the sparse labeling problem
effectively.

Extensive experiments on public data set demonstrate that
BCC method outperforms several baseline methods, espe-
cially when the network is sparsely labeled. Meanwhile,

instead of relying on local neighbor nodes, BCC method
predicts unknown nodes by using valuable nodes which may
not even connected directly, making it a preferable method
for classification in networks with heterophily. Note that in
Enron dataset, only a subset of nodes have labels and we can
only compare different methods on these nodes, but unlabeled
nodes and their connections to labeled nodesmay still provide
useful behavior information, which can be utilized in BCC
method. From this point of view, BCC shares the similar idea
with semi-supervised learning.

The current implementation of BCC has limited computing
efficiency for similarity comparison, when the network is
large, it may become a bottleneck for the algorithm. Future
work may also model the network with different generation
process, and other types of behavior feature and strategies
in the classification process may be applied. Another chal-
lenging extension is the multi-label classification in sparsely
labeled networks, where instances can be assigned with mul-
tiple labels and the labeled nodes are few in the network.
We believe this study highlights the importance of behavior
feature in improving performance of network classification
and the BCC method could be used in a variety of settings
with generalized stability.
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