
1SCIeNTIfIC REPORTS | 7: 7559  | DOI:10.1038/s41598-017-07878-2

www.nature.com/scientificreports

Enhancing structural robustness of 
scale-free networks by information 
disturbance
Jun Wu, Suo-Yi Tan, Zhong Liu, Yue-Jin Tan & Xin Lu

Many real-world systems can be described by scale-free networks with power-law degree 
distributions. Scale-free networks show a “robust yet fragile” feature due to their heterogeneous 
degree distributions. We propose to enhance the structural robustness of scale-free networks against 
intentional attacks by changing the displayed network structure information rather than modifying 
the network structure itself. We first introduce a simple mathematical model for attack information 
and investigate the impact of attack information on the structural robustness of scale-free networks. 
Both analytical and numerical results show that decreasing slightly the attack information perfection 
by information disturbance can dramatically enhance the structural robustness of scale-free networks. 
Then we propose an optimization model of disturbance strategies in which the cost constraint is 
considered. We analyze the optimal disturbance strategies and show an interesting but counterintuitive 
finding that disturbing “poor nodes” with low degrees preferentially is more effective than disturbing 
“rich nodes” with high degrees preferentially. We demonstrate the efficiency of our method by 
comparison with edge addition method and validate the feasibility of our method in two real-world 
critical infrastructure networks.

Networks are everywhere. Examples include the Internet, metabolic networks, electric power grids, supply 
chains, urban road networks, the world trade web, among many others. In the past few years, the discoveries of 
small-world1 and scale-free2 properties has stimulated a great deal of interest in studying the underlying organ-
izing principles of various complex networks. The efforts to develop a universal view of complex networks have 
created both excitement and confusion about the way in which knowledge of network structure can be used to 
understand, control, or design system behavior3. The investigation of complex networks has become an impor-
tant area of multidisciplinary area involving physics, mathematics, operations research, biology, social sciences, 
informatics, and other theoretical and applied sciences4–9.

The functionality of complex networks relies on their structural robustness, i.e. the ability to retain its con-
nectivity when a portion of their nodes or edges is removed10, 11. For example, modern society is dependent 
on its critical infrastructure networks: communication, electrical power, rail, and fuel distribution networks. 
Failure of any of these critical infrastructure networks can bring the ordinary activities of work and recreation to 
a standstill12–14. Terrorist attacks on transportation networks have traumatized modern societies. With a single 
blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet 
communication. Other examples of structural robustness arise in nature, such as the robustness of food webs to 
biodiversity loss15, 16.

Because of its broad applications, the structural robustness of complex networks has received increasing atten-
tion, especially from the original work by Albert et al.17. They introduced two attack strategies, i.e., random failure 
and intentional attack. Albert et al. suggested that scale-free networks characterized by a highly heterogeneous 
degree distribution are robust against random failure but are very fragile against intentional attack. This property 
is referred to as the “robust yet fragile” feature or the Achilles’ heel of scale-free networks by Doyle et al.18, 19.  
Because of the ubiquity of scale-free networks in natural and man-made systems, the structural robustness of 
scale-free networks has been of great interest since the discovery of the scale-free property.

Let’s recall the “robust yet fragile” feature of scale-free networks. From the perspective of attack information, 
random failure and intentional attack are merely two extremes in real-world networks. With the perfect attack 
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information, one can remove the most important nodes preferentially according to some attack criteria, of which 
the most common is the degree of nodes. This attack strategy corresponds to the intentional attack. Without any 
attack information, one can only remove the nodes randomly. This attack strategy corresponds to the random 
failure. Information as an existence or expression format of thing’s movement is a common property of all mat-
ters. The robust-yet-fragile feature of scale-free networks reveals that the attack information can make an enor-
mous difference of structural robustness. It inspires us to consider enhancing the structural robustness against 
intentional attacks by changing the displayed network structure information rather than modifying the network 
structure itself. If we can reduce the perfection of attack information by information disturbance, the critical hub 
nodes may survive during the intentional attacks and then the structural robustness of scale-free networks will be 
remarkably enhanced. To the best of our knowledge, this idea is new.

Results
Measuring the perfection of attack information. Consider networks formalized in terms of a simple 
undirected graph G(V, E), where V is the set of nodes and E is the set of edges. Denote by N = |V| the number of 
nodes. Denote by ki the degree of node vi and denote by pd(k) the degree distribution. If the degree distribution 
follows a power law, i.e., pd(k) = ck−λ(m ≤ k ≤ M), where m is the minimum degree and M is the maximum degree 
of G, a network is called a scale-free network with the scaling exponent λ. The power-law distribution implies that 
nodes with only a few edges are numerous, but a very few nodes have a large number of edges. Due to the ubiquity 
of scale-free networks in the real-world, we focus on the structural robustness of scale-free networks in this study.

We only consider the node attack approaches in this study and assume that the attached edges are removed if 
one node is removed. We employ the degree of each node as the attack criterion, which means that the attacker 
will remove nodes in decreasing order of the degrees of nodes. We remark that the attack criterion has no essential 
effect on our model. Noting that the attacker may not obtain the perfect information, we denote by di the dis-
played degree of a node vi from the view of attacker and define it as the attack information. Although the true 
degree of a node is the objective existence, the displayed degree di will be generally different from the true degree 
di. To measure the deviation from the displayed degree to the true degree, the displayed degree di is supposed to 
spread out from the true degree towards the minimum node degree m and the maximum node degree M propor-
tionately. For the purpose of convenience, we assume that the displayed degree di follows a uniform distribution 
U(a, b) as shown in Fig. 1, where the minimum value

α α α= − − − = + −a d d m d m( )(1 ) (1 ) (1)i i i i i i

and the maximum value

α α α= + − − = + − .b d M d d M( )(1 ) (1 ) (2)i i i i i i

Here, the perfection parameter of attack information αi ∈ [0, 1] characterizes the variability of the displayed 
degree di. The larger αi is, the narrower the distribution region is and then the more perfect the attack informa-
tion is. There are two extreme cases. If αi = 0 for all nodes, di follows a uniform distribution in the region [m, M], 
which corresponds to the random failure. If αi = 1 for all nodes, we obtain =d di i, which corresponds to the 
intentional attack.

It is easy to obtain that the expectation of the displayed degree of a node vi is

α
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We remark that the fluctuation interval of the displayed degree di of a node vi may not be symmetrical around 
its true degree di. If di < (m + M)/2, then α α= + + − >E d d m M d( ) ( )(1 )/2i i i i i; if di > (m + M)/2, then 

Figure 1. Illustration of the mathematical model of attack information. f d( )i  is the probability density function 
of the displayed degree di. The information perfection parameter αi characterizes the variability of the displayed 
degree di.
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α α= + + − <E d d m M d( ) ( )(1 )2i i i i i. It suggests that the deviation from the displayed degree to the true 
degree may come from both the inaccuracy and the imprecision of attack information, where the accuracy refers 
to the closeness of agreement between a measurement and the true value, and the precision refers to the closeness 
of agreement of a set of measurements.

Impact of attack information on structural robustness. To explore the impact of attack information, 
we first show in Fig. 2 the displayed degree distribution 



p k( )d  in random scale-free networks20, which is deter-
mined by the degree distribution pd(k) and the attack information perfection αi. For the purpose of convenience, 
let’s suppose that the attack information perfection αi for all nodes is identical, i.e., αi = α, i = 1, 2, …, N. We find 
that the displayed degree distributions gradually deviate from power-law distributions as the attack information 
perfection parameter α decreases.

We show the relative sizes of the largest component S as the removal fraction of nodes f increases for various 
attack information perfection parameter α in Fig. 3. It is easy to see that the attack information perfection has a 
considerable impact on S. If the attack information perfection parameter α is small, for example α = 0.2, the rela-
tive size of the largest component decreases slowly with the increasing of removal fraction of nodes and survives 
until a large fraction of the nodes are removed. However, if the attack information perfection parameter α is large, 
the S decreases abruptly at a small critical value of f.

Figure 4(a) shows the critical removal fraction fc as a measure of network robustness17 both from the numeri-
cal and analytical results (see Methods). We observe that increasing the attack information perfection remarkably 
reduces the structural robustness of scale-free networks. From another perspective, we can enhance the structural 
robustness of scale-free networks by decreasing the perfection of attack information. For example, when m = 2, if 
we can decrease the attack information perfection parameter by information disturbance from α = 1 to α = 0.8, 
the critical removal fraction fc can be increased from 23% to 63%. This means that information disturbance is an 
efficient strategy to enhance the structural robustness of scale-free networks. Moreover, we report the network 
robustness measure R21, 22 as a function of the attack information perfection parameter α in Fig. 4(b) and observe 
the similar results as the case of fc. When m = 4, if we can decrease the attack information perfection by informa-
tion disturbance from α = 1 to α = 0.8, the network robustness measure R can be increased from 0.3041 to 0.3834.

Figure 2. The displayed degree distribution (in a log-log scale) for various attack information perfection 
parameter α in a random scale-free network. The degree distribution follows pd(k) = (λ − 1)mλ−1k−λ, where 
N = 1000, λ = 2.5 and m = 2. The simulation results are averaged over 100 independent realizations of imperfect 
attack information. The solid lines correspond to the analytical results (see Methods).
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Optimization model for disturbance strategies with cost constraint. In most realistic cases, we can 
not simultaneously disturbance all the nodes due to the cost constraint. Denote by βi = 1 − αi ∈ [0, 1] the distur-
bance strength parameter of a node vi, which represents the magnitude of information disturbance for the node 
vi. We call the vector B = [β1β2 … βN] a disturbance strategy. We define a categorical variable ηi for each node vi 
that ηi = 1 if the node vi is disturbed, otherwise ηi = 0, i.e.,

Figure 3. The relative sizes of the largest component S versus f for various attack information perfection 
parameter α. The original network is the same as the one we used in Fig. 2. The simulation results are averaged 
over 100 independent realizations of imperfect attack information.

Figure 4. The critical removal fraction of nodes fc (a) and network robustness R (b) versus attack information 
perfection parameter α in random scale-free networks. The degree distributions follow pd(k) = (λ − 1)mλ−1k−λ, 
where N = 1000, λ = 2.5, m = 2 (■), m = 3 (◆) and m = 4 (▼). The simulation results are averaged over 100 
independent realizations of imperfect attack information. The solid lines correspond to the analytical results.
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We denote by ω η= ∑ =N i
N

i
1

1  the disturbance range parameter. The case of ω = 1 has been studied in the previ-
ous section.

According to our mathematical model for attack information, the displayed degree of a node after information 
disturbance is a random variable rather than a definite value before information disturbance. We suppose that 
the uncertainty of the displayed degree of a node determines the of disturbance cost for it. The more uncertain 
the displayed degree of a node is, the costlier the disturbance strategy. We use the standard deviation of displayed 
degree of a node given in Eq. (4) to characterize the uncertainty of the displayed degree of a node and define the 
disturbance cost of a disturbance strategy as the sum of standard deviation of displayed degree for all nodes
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Because 0 ≤ βi ≤ 1, it is easy to obtain that the maximum disturbance cost is = +C m M N3 ( ) /6max  corre-
sponding to the complete disturbance strategy Bmax = [11…1]. In most cases, the disturbance cost is limited. We 
define the cost constraint as follows

θ θ= ⋅ =
+Ĉ C m M N3 ( )
6

, (7)max

where θ ∈ [0, 1] is the cost constraint parameter. The larger the cost constraint parameter θ is, the more loose the 
constraint of disturbance cost is; the smaller the cost constraint parameter θ is, the tighter the constraint of distur-
bance cost is. In the extreme case of θ = 0, no nodes can be disturbed; in the extreme case of θ = 1, all nodes can 
be completely disturbed. The cost constraint condition ≤ ˆC C leads to

∑ β θ≤ ⋅ .
=

N
(8)i

N

i
1

Our goal is to enhance the structural robustness by choosing the disturbance strategy B = [β1 β2…βN] given 
the cost constraint parameter θ. Thus we define the effect of a disturbance strategy as

Φ = ΓB B( ) ( ) , (9)

where Γ is the structural robustness measure, such as fc or R (see Methods), and |Γ(B)| represents the expectation 
of the structural robustness measure under a disturbance strategy B. Thus, the optimization model of disturbance 
strategies can be described as follows

∑
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For large N, it will be a large-scale optimization problem23, which is very time-consuming. For the conveni-
ence of analysis, we next consider a simplified version of the optimization model presented above. We assume that 
the disturbance strength parameters βi for all the disturbed nodes (ηi = 1) are identical, i.e.,

β β η= ⋅ . (11)i i

where β ∈ (0, 1]. Thus the disturbance cost can be written as
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and then the optimization model for disturbance strategies can be transformed into

∑

β η η η

β η θ

η
β

Φ = ⋅ …

. .











⋅ ≤ ⋅

=

< ≤

.=

B

N

max ( [ ])

s t
0, 1

0 1 (13)

N

i

N

i

i

1 2

1

It means that the optimization problem is just simplified to determine the node set to disturb and the magni-
tude of information disturbance.

According to the analysis above, we know that the disturbance effect Φ decreases monotonically as the attack 
information perfection parameter α increases and hence increases monotonically as the disturbance strength 
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parameter β increases. Therefore, to maximize Φ, the parameter β should take the maximum value under the 
conditions of constraint β η θ⋅ ∑ ≤ ⋅= Ni

N
i1  and 0 < β ≤ 1, which leads to
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Noting that η ω∑ = ⋅= Ni
N

i1 , then we obtain that
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Thus the optimization model for disturbance strategies presented in Eq. (13) can be written as

θ ω η η η
η
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It means that the optimization problem is just simplified to determine how many and which nodes should be 
disturbed.

To determine which nodes are disturbed, we transform the process of determining into an unequal probability 
sampling problem without replacement. We define the selection probability that a node vi is sampled to disturb 
in each sample as follows

∇ =
∑

δ

δ
=

d
d

,
(17)

i
i

t
N

t1

where δ ∈ [−1, 1] is the disturbance strategic parameter. If δ > 0, the high-degree nodes are disturbed prefer-
entially; if δ < 0, the low-degree nodes are disturbed preferentially; if δ = 0, the nodes are disturbed randomly. 
Consequently, the simplified version of optimization model for disturbance strategies can be described as follows

ω δ

ω
δ

Φ = Θ

. . ≤ ≤
− ≤ ≤{

Bmax ( ( , ))

s t 0 1
1 1

,
(18)

where Θ:(ω, δ) → B corresponds to the procedure of unequal probability sampling.

Optimal disturbance strategies for enhancing structural robustness. We next investigate the opti-
mal disturbance strategies for enhancing structural robustness based on the simplified optimization model in 
Eq. (18). Because the calculation of structural robustness measure Γ might be computationally expensive, and 
furthermore, we need to take the average over many realizations of disturbance strategy to evaluate the distur-
bance effect Φ, the exploration of the solution space are largely limited. Therefore, we consider to use the statis-
tical approximations to construct a meta-model, which provides a surrogate model of the original optimization 
problem. The surrogate model can be estimated from experiment data by running the simulation experiments on 
a sample of points in the region of interest. We employ the popular Kriging surrogate models24 in this study. We 
show the Kriging-based response surface and contour plots for the disturbance effect in Fig. 5.

From the response surface and the contour plots in Fig. 5, we surprisingly find that the disturbance effect 
decreases monotonically with the increase of disturbance strategic parameter δ given the disturbance range 
parameter ω. We observe similar results in scale-free networks with various parameters. It suggests that, given the 
disturbance range parameter ω, disturbing the “poor nodes” with low degrees may be more effective in scale-free 
networks, i.e., the optimal disturbance strategic parameter is δ* = −1. This observation is counterintuitive but 
interesting. To explain this phenomenon, we sort all nodes in decreasing order of their degrees di before informa-
tion disturbance and their displayed degrees di after information disturbance, respectively. Denote by ri and ri the 
rank of vi before and after information disturbance, respectively. In Fig. 6, we plot the degree pairs d d( , )i i  and the 
rank pairs r r( , )i i  under three typical disturbance strategies: (1) “rich nodes strategy” with δ = 1; (2) “random 
nodes strategy” with δ = 0; (3) “poor nodes strategy” with δ = −1. Under the “rich nodes strategy”, we observe that 
the degrees of high-degree nodes change a lot after information disturbance, but their ranks change very little and 
then the small “rich group” remains basically unchanged. It leads to the fact that high-degree nodes will still be 
removed after information disturbance. However, under the “poor nodes strategy”, we observe that both the 
degrees and the ranks of low-degree nodes change a lot after information disturbance and then many “poor 
nodes” infiltrate the “rich group” after information disturbance. Thus, the high-degree nodes can survive during 
the attack. These findings suggest that what really matters to the enhancement of structural robustness is the 
change of ranks of nodes rather than the change of the degrees of nodes itself. Due to the heterogeneous degree 
distributions, the “poor nodes strategy” disturbs the ranks of nodes in scale-free networks more dramatically and 
then is more effective than the “rich nodes strategy”.

To verify this judgment, we implement similar experiments in Erdös-Rényi (ER) random graphs25 and show 
the results in Fig. 7. The ER random graph GN,p is obtained by starting with a set of N nodes and adding edges 
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between them at random such that each of the possible N(N − 1)/2 edges occurs independently with probability 
p. The ER random graph has a Poisson degree distributions for large N such that most nodes in the network have 
similar degrees. In contrast to the case of scale-free networks, we find that the “rich nodes strategy” seems to 
be more effective than the “poor nodes strategy” in ER random graphs. This result can also be explained by our 
observation that many high-degree nodes can survive after information disturbance under the “rich nodes strat-
egy”, while the “rich group” remains almost unchanged under the “poor nodes strategy”.

We next investigate the optimal disturbance range parameter ω for enhancing structural robustness of 
scale-free networks. We show in Fig. 8 the relationship between the disturbance effect Φ and the disturbance 
range parameter ω under the “poor nodes strategy” (δ* = −1). We observe that the disturbance effect Φ achieves 
a maximum value Φ* (see the inset in Fig. 8) at the optimal disturbance range parameter ω*. We find that, even 
with a very small cost constraint parameter θ = 0.05, the maximum disturbance effect Φ* can be increased from 
0.1433 (intentional attack without information disturbance) to 0.2897. In other words, disturbance with an aver-
age disturbance strength parameter 0.05 can almost double the structural robustness of scale-free networks. 
Moreover, we observe that, if the cost constraint parameter θ increases to 0.5, the maximum disturbance effect Φ* 
can achieve to the case of random failure (0.4361).

We show in Fig. 9 the optimal disturbance range parameter ω* and the corresponding optimal disturbance 
strength parameter β* based on Eq. (15) as a function of the cost constraint parameter θ. We can obtain the 
optimal disturbance strategies with various cost constraint parameters θ. For example, with θ = 0.05, we should 
disturb about 50% nodes with the disturbance strength parameter 0.1. We find that the optimal disturbance range 
parameter ω* firstly increase rapidly as the cost constraint parameter θ increases and then achieve to a stable value 
when θ is large. Moreover, we find that the optimal disturbance strength parameter β* increase approximately 
linearly as the cost constraint parameter θ increases.

Comparison with other approach for enhancing structural robustness. To furthermore demon-
strate the efficiency of our method, we next compare our method with the edge addition method. In each step of 
the edge addition method, we add randomly one nonexistent edge to enhance the structural robustness. We show 
in Fig. 10 the number of edges needed to be added to achieve the same structural robustness measure with various 
cost constraint parameters θ. We find that we need to add near 600 edges to achieve the same effect even with the 
small cost constraint parameter θ = 0.05. It indicates that enhancing structural robustness of scale-free networks 
against intentional attacks by information disturbance is a cost-efficient approach.

Experiments in real-world networks. Modern society is dependent on well-functioning infrastructure. 
To valid the feasibility of our method, we consider two of the most fragile, but critical infrastructures: the power 
grid and the fiber network. The breakdown of any of these networks would constitute a major disaster due to the 
strong dependency of modern society on energy and information. We here apply our method to the India power 
grid26 consisting of N = 572 nodes and W = 871 edges and the fiber backbone operated by a major U.S. network 
provider (CenturyLink) consisting of N = 154 nodes and W = 206 edges. Both networks have power-law degree 
distributions.

We first calculate the original structural robustness measure R0 for the India power grid (IPG) and the U.S. 
fiber network (USF). It is obtained that = .R 0 0912IPG

0  and = .R 0 1341USF
0 . We then use the method introduced 

above to explore the optimal disturbance strategies with various cost-constrain parameters. The results are shown 
in Table 1. It is easy to find that the structural robustness of both IPG and USF is dramatically enhanced by the 
information disturbance. For example, with the cost constraint parameter θ = 0.3, the optimal disturbance strat-
egy can almost double the structural robustness of IPG from = .R 0 09IPG

0  to Φ* = 0.1801. Moreover, we see that, 
for both IPG and USF, the optimal disturbance strategy is try to disturb intensively the “poor nodes” with low 
degrees (δ* = −1) with high disturbance strength parameter (β* ≈ 1).

Figure 5. The Kriging-based response surface and contour plots for the disturbance effect. The original 
network is the same as the one we used in Fig. 2. The cost constraint parameter θ is 0.1. The circles represent 
the original experiment data, which are averaged over 100 realizations of disturbance strategy. The disturbance 
effect is obtained based on the structural robustness measure R.
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Discussions
Many real-world systems can be described by scale-free networks with power-law degree distributions, leading 
to the “robust yet fragile” feature. The enhancement of structural robustness of scale-free networks against inten-
tional attack is an important and challenging problem. In this study, we assumed that the attacker removes nodes 
according to some attack criteria, of which the most common is the degree of nodes. Then the attack criterion 
can be considered as the attack information. With perfect attack information, one can preferentially remove the 
most important nodes in the network (intentional attack). However, in many realistic settings, the attacker can 
not obtain perfect attack information. For example, the displayed degree of nodes from the view of the attacker 
may deviate from the true degree. Thus, the attacker wants to gain the attack information as much as possible 
to destroy a network using various reconnaissance means, whereas the defenders want to conceal the attack 
information as much as possible to protect a network using various disturbance means. It inspires us to con-
sider enhancing the structural robustness against intentional attacks by changing the displayed network structure 
information rather than modifying the network structure itself.

We first introduced a mathematical model for attack information based on the node degree. Instead of a cer-
tain value, we assumed that the displayed degree di with imperfect attack information is a random variable follow-
ing a uniform distribution, which can be controlled by a normalized perfection parameter αi ∈ [0,1]. With this 
assumption, we can derive analytically the displayed degree distribution and the measure of structural robustness 
with the imperfect attack information. It is worth mentioning that, even we use degree in the model, the method 
can be readily extended to other attack criteria, such as node betweenness, closeness, etc. We investigated the 
impact of attack information on the structural robustness of scale-free networks both analytically and numeri-
cally. It was shown that reducing the attack information perfection by information disturbance can dramatically 
enhance the structural robustness of scale-free networks. We then proposed a generalized and simplified optimi-
zation model of disturbance strategies. In the simplified optimization model, it is assumed that the disturbance 
strength parameter for all the disturbed nodes is identical. We solved the simplified optimization model based on 
the Kriging-based response surface. Intuitively, one should disturb “rich nodes” with high degrees preferentially 
to enhance the structural robustness. But we found with surprise that, with cost constraints, disturbing “poor 
nodes” with low degrees is more effective in scale-free networks. We explained this counterintuitive phenomenon 
by comparing with Erdös-Rényi (ER) random graphs and emphasized that it stems from the heterogeneous 

Figure 6. Degree pairs (a) and rank pairs (b) of nodes before and after information disturbance under three 
typical disturbance strategies. The original network is the same as the one we used in Fig. 2. The cost constraint 
parameter θ is 0.1 and the disturbance range parameter ω is 20%. The solid lines are the reference lines which 
represent that = = 

d d r rori i i i.
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Figure 7. Degrees (a) and ranks (b) of nodes before and after information disturbance under three typical 
disturbance strategies. The original network is an ER random graph GN,p, where N = 1000 and q = 0.01. The cost 
constraint parameter θ is 0.1 and the disturbance range parameter ω is 20%. The solid lines are the reference 
lines which represent that = = 

d d r rori i i i.

Figure 8. The disturbance effect Φ versus the disturbance range parameter ω under the “poor nodes strategy”. 
The original network is the same as the one we used in Fig. 2. The symbols represent the original experiment 
data, which are averaged over 100 realizations of disturbance strategy. The solid lines are obtained from 
the Kriging surrogate model. The insert shows the maximum disturbance effect Φ* as a function of the cost 
constraint parameter θ and the cases of random failure and intentional attack as references (dotted lines). The 
disturbance effect is obtained based on the structural robustness measure R.
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Figure 9. The optimal disturbance range parameter ω* (a) and the optimal disturbance strength parameter β* 
(b) versus the cost constraint parameter θ. The original network is the same as the one we used in Fig. 2. The 
disturbance effect is obtained based on the structural robustness measure R.

Figure 10. The edge addition method versus the information disturbance method. The original network is the 
same as the one we used in Fig. 2. The disturbance effect is obtained based on the structural robustness measure R.

Networks

θ = 0.1 θ = 0.2 θ = 0.3

δ* ω* β* Φ* δ* ω* β* Φ* δ* ω* β* Φ*

IPG −1 0.10 1 0.1245 −1 0.20 1 0.1548 −1 0.30 1 0.1801

USF −1 0.11 0.9091 0.1605 −1 0.20 1 0.1799 −1 0.31 0.9677 0.1976

Table 1. The optimal disturbance strategies in two real-world critical infrastructure networks. IPG represents 
the India power grid and USF represents the U.S. fiber network.



www.nature.com/scientificreports/

1 1SCIeNTIfIC REPORTS | 7: 7559  | DOI:10.1038/s41598-017-07878-2

degree distributions of scale-free networks. It is worth noting that this finding is based on the assumption of 
identical disturbance strength parameters. The optimal disturbance strategy with non-identical disturbance 
strength parameters remains an open and challenging problem. Lastly, we demonstrated the efficiency of our 
method by comparing with the edge addition method and validate the feasibility of our method in two real-world 
critical infrastructure networks, i.e., the India power grid and the U.S. fiber network. Although our results can not 
apply to all networks with various degree distributions, it is of great significance because of the ubiquity of 
scale-free networks.

It is intuitive to enhance structural robustness of scale-free networks against intentional attacks by information 
disturbance. The fundamental objective of this approach is to make important nodes less distinguishable with less 
important nodes by information disturbance, and thus the important nodes can survive during the intentional 
attacks. In most cases, changing the displayed information of network structure is easier and more realistic than 
reconstructing the network. Although we didn’t give the practical disturbance scheme from a technical per-
spective, the main contribution of this paper is to present a general theoretical framework and demonstrate the 
efficiency and the feasibility of this method from a methodological perspective. We believe that our model and 
findings may lead to useful insights on developing effective attack or defense strategies in scale-free networks, so 
as to protect infrastructure systems (e.g., power grids, telecommunications, transportation and water-supply sys-
tems) against terrorist attacks, or reduce undesired highly synchronized behavior in the central nervous system 
(e.g., Parkinson’s disease, epilepsy, and other pathological rhythmic activities), etc.

Methods
Measures of structural robustness with imperfect attack information. Simple and effective 
measures of structural robustness are essential for the study of network resistance. We first consider the critical 
removal fraction of nodes to characterize the structural robustness of scale-free networks with imperfect attack 
information17, 27. It characterizes statistically how the removal of nodes leads to the disintegration of the network 
at a given critical removal fraction fc. The larger the fc is, the more robust the network is. The disintegration of 
a network is measured in terms of network performance, which is characterized most often with the size of the 
largest component. In this study, we choose κ ≡ <k2>/<k> <2 as the criterion for determing the disintegration 
of a network28, 29. After each node is removed, we calculate κ. When κ becomes less than 2, we record the number 
of nodes t removed up to that point. The threshold fc is obtained as fc = <t>/N.

Furthermore, because the structural robustness measure fc is the critical fraction of attacks at which the net-
work completely collapses, it ignores situations in which the network suffers a big damage without completely 
collapsing. To demonstrate the impact of attack information in depth, we also consider the network robustness 
measure R defined as21, 22

∑=
+ =

R
N

S Q1
1

( )
(19)Q

N

0

where S(Q) is the fraction of nodes in the largest component after removing Q = Nf nodes in decreasing order of 
the displayed node degree d . The normalization factor 1/(N + 1) ensures that the network robustness with differ-
ent sizes can be compared. The network robustness R, which corresponds to the integral of the curves S(Q), not 
only measures after how many removals the network collapse, but also considers the size of the largest component 
for each number of removed nodes. The range of possible R values is between 1/(N + 1) and 0.5, where R = 0 
corresponds to an empty network of isolated nodes and R = 0.5 corresponds a fully connected network.

The displayed degree distribution with imperfect attack information. For the purpose of conven-
ience, let’s suppose that the attack information perfection parameter αi for all nodes is identical, i.e., αi = α, i = 1, 
2, …, N. Considering that the displayed degree di follows a uniform distribution U(a, b), we first formalize di as

α α α
= + −
= + − + − −

d a b a u
d m M m u

( )
(1 ) ( )(1 ) , (20)

i

i

where u is a random variable which follows a uniform distribution over the unit interval [0, 1]. Let Ψ = diα and 
Δ = m(1 − α) + (M − m)(1 − α)u, then we obtain that

= Ψ + ∆.d (21)i

Noting that

=





≤ ≤λ−
p k ck m k M( )

0 others
,

(22)d

where c ≈ (λ − 1)mλ−1 and M ≈ mN1/(λ−1) 30. We then obtain

α α=





′ ≤ ≤λ

Ψ

−
p k c k m k M( )

0 others
,

(23)

where c′ = αλ−1(λ − 1)mλ−1. Moreover, it is easy to obtain
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α α α= − − − ≤ ≤ − .∆ {p k M m m k M( ) 1/( )(1 ) (1 ) (1 )
0 others (24)

Consequently, we can obtain the probability distribution of displayed degree d  using the convolution 
formula

∫ ∫= − = − .
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The critical removal fraction with imperfect attack information. In this study, we use the generating 
function formalism31, 32 to derive the critical removal fraction fc in random scale-free networks. We first sort all 
nodes in decreasing order of d . Denote by r k( ) the rank of a node with the displayed degree k. Denote by ∼K  the 
maximum displayed degree among the remaining nodes after a fraction f of nodes are removed in decreasing 
order of d . Noting that

∑∼
= = .

= +
∼



r K N p k Nf( ) ( )
(26)k K

M

d
1

Then ∼K  can be obtained by solving Eq. (26).
Denote by q(k) the probability that a node with degree k is not removed. It equals to the probability that the 

displayed degree d  of a node with degree k is not larger than than ∼K . Considering that d  is stochastic and follows 
the uniform distribution in the region [kα + m(1 − α), kα + M(1 − α)]. Then we can formalize q(k) as

α α

α α
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α α α α
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Noting that a giant component forms under the critical condition28

∑ −

∑
= .

k k p k q k
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k

Substituting Eq. (27) into Eq. (28), we can solve the critical removal fraction fc.
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