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Abstract
Heterogeneous information network (HIN) has recently been receiving increasing attention in recommender systems due to

its practicability in depicting data heterogeneity. The rich structural and semantic information embodied in the HIN can

help mining latent features of users and items for recommendations. However, almost all existing HIN-based recom-

mendation methods focus on the design of complicated learning architecture while using simply initialized features. In this

paper, we propose a novel feature-enhanced embedding learning model which combines informative feature initialization

strategy with simple learning architecture for heterogeneous collaborative filtering. We first build multiple homogeneous

sub-networks by extracting different relations guided by meta-paths from the HIN. We then design a comprehensive

feature initialization strategy that contains semantic and spatial encoding module to characterize the node feature. After

that, a simple learning architecture based on multi-layer perceptron is applied to learn the latent representation of users and

items. Next, a novel convolutional neural network-based fusion mechanism is used to determine the attention weight of

semantic relations and compress multiple embedding vectors into a compact representation to apply for final recom-

mendation. Finally, we conduct extensive experiments on two classic datasets to demonstrate the effectiveness and

feasibility of the proposed FHetCF method in solving HIN-based recommendation tasks. Results show that the proposed

method soundly outperforms the competitive baselines by 1.71 to 10.46% on hit ratio and 3.17 to 13.75% on normalized

discounted cumulative gain, respectively. The proposed method opens up a new avenue to effectively utilize heterogeneous

information to improve recommendation performance.
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1 Introduction

Due to the rapid growth of online information, it has

become difficult for online users to quickly find items or

services of interest from the massive amounts of available

information. Recommender systems have been developed

as an effective solution to deal with information overload

issue and help users to filter redundant information. They

have been widely applied in many fields, including

e-commerce, advertising, education, and so on [1–7]. The

general idea is for recommender systems to predict a user’s

preference of items that have not yet been purchased and

recommend items that cater to their needs or taste. Col-

laborative filtering (CF) is a typical approach used by

recommender systems which predicts the user’s preference

based on historical user–item interactions [8, 9]. Generally,

collaborative filtering methods comprise two important

components: (1) latent factor learning, which translates the

user and item into vectorized representations, and (2) in-

teraction modeling, which predicts the interaction between

users and items using latent representation. For example,

matrix factorization (MF) [10], which is one of the sought-

after CF methods, projects users and items into a low-

dimensional space and obtains their latent factors. The

user–item interaction is then modeled using the inner

product of latent factors.

However, a major limitation of CF methods is that they

only exploit direct user–item interaction data and neglect
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different types of dependencies among users and items, so

they cannot completely describe users personalized inter-

ests and the characteristics of items [11, 12], and the per-

formance is usually restricted due to data sparsity. Due to

the practicability of depicting data heterogeneity, hetero-

geneous information network (HIN) has been verified as an

effective tool to incorporate diverse dependencies into

recommendation models [13–15], which have recently

been attracting increasing attention. A HIN contains multi-

typed objects connected by edges belonging to multiple

types, providing a feasible way to organize complex rela-

tions between users and items in recommender systems

[16–18]. In a HIN-based recommender system, the main

task is to generate users’ and items’ presentations for rec-

ommendation by capturing heterogeneous information.

In recent years, some attempts have been made to utilize

HIN in recommender systems and have obtained encour-

aging performance improvements. The basic idea of most

existing HIN-based recommendation models is to use the

interactive structural information like meta-paths to guide

the representation learning process. However, these meth-

ods still face two problems. First, it is usually time-con-

suming to generate sufficient meta-path instances (or meta-

graphs) for representation learning with HIN [18, 19],

Limiting its applications for large for large network in real-

world scenarios. Second, the learning module designed for

capturing various interactive information embedded in the

HIN is sophisticated, which will degrade the efficiency and

hinder the real-world application [49, 50].

Based on the above analysis, we will address the fol-

lowing challenges which are not well-solved by existing

works on HIN-based recommender system in this study:

(1) How to design a simple but effective mechanism

for learning latent representations based on the HIN.

Recent research [27] argues that a careful design of a

neighborhood selection method could improve the recom-

mendation performance effectively even with a single-

layer graph convolutional network (GCN). This inspired us

to rethink the architecture of a HIN-based recommendation

method. Instead of employing meta-paths to guide learning

process, we focus on the design of feature initialization

strategy which aimed to better encoding the node feature

fed into the learning module. Existing feature initialization

strategies, such as random initialization or path count

[2, 28, 29] which are commonly used in other machine

learning tasks, are not considered to be feasible solutions

under the heterogeneous network setting since they neglect

or only capture part of the information embodied in HINs.

Although some attempts utilize extra context features of

entities i.e., research keywords for authors [43], this kind of

information is not available most of the time. Thus, a well-

designed initialization module to extract the informative

feature in the HIN itself is required.

(2) How to recognize the importance of different

semantic relations. Semantic relations in fact reflect the

various factors that may contribute to decision-making

process. Thus, to predict the interaction probability

between users and items, the recommendation model

should be capable of fusing latent representation generated

from different semantic relations effectively. Existing

methods such as averaging or MLP-based attention are not

feasible options in the heterogeneous setting since they

cannot fully distinguish the importance among different

semantic relations (we will show this in the Ablation Study

section). A proper fusing mechanism to aggregate the

diverse semantic information is always expected.

To address these challenges, we propose a Feature-en-

hanced embedding model for Heterogeneous Collaborative

Filtering (FHetCF). We first employ meta-path [30], a

composite relation sequence, to build the corresponding

user–user/item–item homogeneous network. Thus, we

obtain a collection of homogeneous sub-networks by

decomposing the HIN with different semantic relations.

Then we propose a feature-enhanced embedding learning

method to learn latent representation for users and items.

As feature initialization strategy is our main focus in the

paper, we propose semantic and spatial encoding to capture

semantic and geometric similarity between nodes and

characterize the node feature in the input layer of the neural

embedding module. For clarity, the embedding module is

utilized to map the node feature into low-dimensional

space and learn the latent representation of users and items.

Furthermore, to automatically determine the importance of

semantic relations for each user (or item), we leverage the

power of one-dimensional convolutional neural network

(1D-CNN) [31] and design an attention mechanism to

capture personalized preference information. The contri-

bution of the paper is summarized as follows:

• We design a feature-enhanced embedding model that

infers the latent representation of users and items based

on the semantic and spatial encoding technique.

Empirical study demonstrates that an informative

feature initialization with a simple embedding learning

architecture is capable of obtaining satisfactory recom-

mendation performance.

• We propose a fusion mechanism based on a 1D-CNN to

aggregate latent factors from different semantic rela-

tions. To the best of our knowledge, this is the first

work which utilizes 1D-CNN to learn personalized

weight on meta-paths.

• We provide a comprehensive analysis on common

feature initialization strategies in existing research and

investigate their recommendation performance in our

experiment.
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The rest of the paper is organized as follows. Section 2

provides an overview of related work. Section 3 introduces

basic concepts and defines the top-N recommendation

problem. The detail of our model is presented in Sect. 4.

Section 5 presents the settings of experiments. The

experimental results are analyzed in Sect. 6. Finally, we

summarize our work and discuss future work in Sect. 7.

2 Literature review

2.1 Representation learning on HIN

A HIN defines a network containing various types of nodes

and links, and it is a popular technique for modeling

complex relations between different types of entity in the

real world. Representation learning on HINs projects nodes

in a HIN to a low-dimensional vector space, and the goal is

to preserve the original geometric structure of a HIN by

optimizing the vectorized node representation [32]. The

obtained embeddings served as the input feature for a

variety of downstream machine learning tasks such as node

classification [33, 34], community detection [35], and

clustering [36].

A significant line of research has been addressed for

representing heterogeneous information networks. For

example, Metapath2vec [39], employs random walks [38]

guided by meta-path on nodes and uses a skip-gram model

to learn network structure. HIN2Vec [40] uses relations

specified in forms of meta-paths as the prediction target to

refine node embedding. Unlike Metapath2vec, the training

tuple is generated by homogeneous random walks regard-

less of node types and edge types in HIN2Vec. Instead of

performing random walks on HINs, PTE [41] decomposes

the HIN into a set of bipartite graphs, with each repre-

senting one relation type. The learning objective of PTE is

obtained by jointly solving second-order proximity over all

bipartite graphs. In recent years, graph neural network

(GNN) based methods have become a trending approach to

facilitate representation learning in graph data. The

embedding learning process can be seen as the aggregation

of neighborhood information. R-GCN [42] utilizes the

relational graph convolutional neural network (GCN) to

learn the latent representation, which multiple convolution

matrices are used to embed the heterogeneity of relations in

the HIN. HGAT [43] adopts the graph attention network to

perform embedding learning process, and the model

aggregates the information by assigning personalized

weight for neighbors came from different hops and meta-

paths. MAGNN [44] focuses on the content information in

meta-path instances and introduced a GNN learning mod-

ule to enrich the embeddings by aggregating node features

along the instance. Later, Hu et al. [45] propose HGT

which employs transformer-based attention to learn the

type-specific representations of nodes and links, so that

informative meta-paths could be extracted automatically

rather than manual design. Similarly, HetSANN [46]

designs a meta-path free learning method which contains

multiple graph attention layers aimed for encoding various

types of relation in the HIN. Recently, Yu et al. [47] design

R-HGNN which adds a relation representation learning

module to guide the relation-specific node representation

learning process. Zhao et al. [48] extend the graph structure

learning method to the heterogeneous network setting, and

proposed a framework named HGSL which simultaneously

learns the HIN structure and GNN parameters.

To conclude, these methods have shown encouraging

performance in many downstream machine learning tasks

for HINs. Since the main objective of a recommender

system is to generate a comprehensive vectorized repre-

sentation for users and items, HIN-based embedding

methods can provide guidance on utilizing heterogeneous

information to improve recommendation performance.

2.2 HIN-based recommender system

Collaborative filtering is a popular approach in the rec-

ommender system. It makes predictions of a user’s pref-

erence based on preference information collected from

many other similar users. Matrix factorization (MF) [10]

treats the user–item interaction as the inner product of the

latent factors of users and items. Based on MF, BPR [51]

introduces a pairwise ranking objective function to opti-

mize prediction performance. Since the linear inner pro-

duct is not capable of capturing complicated intrinsic

relations between users and items, NeuMF [52] leverages

the power of a neural network to model the user–item

interaction. Recently, graph-based CF methods have

gained increasing attention due to their ability for high-

order connectivity. NGCF [53] transforms user–item

interactions to bipartite graphs and uses graph convolu-

tional operation to generate embedding of the user and

item.

Notably, the data sparsity issue is commonly observed in

real recommender systems [54], which could largely limit

the effectiveness of CF methods. To tackle this issue, a

number of approaches that leverage auxiliary information

to generate better representations have been proposed in

recent years. One of such approaches is Cross-domain

collaborative filtering (CDCF) [55], which aims to exploit

the knowledge from auxiliary domains to improve the

performance in the target domain. Yu et al. [56] design a

two-side transfer method which adopts Funk-SVD [10] to

extract informative features from auxiliary domains, and

then users’ and items’ features could be effectively enri-

ched in the target domain. TSSEAE [57] addresses the
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domain selection problem in an ensemble learning manner

and utilizes Pareto Ensemble Pruning technique [58] to

determine the optimal combination of auxiliary domains.

As a burgeoning direction, HIN has been proven to be a

powerful tool for characterizing diverse entities and complex

relations in practical recommendation scenarios. There is a

surge of works on building an efficient recommender system

based on HIN. For instance, HERec [19] utilizes meta-path-

based randomwalks to derive homogeneous node sequences

from the HIN, and it adopts deepwalk [38] to generate node

embedding for recommendations. LGRec [20] combines

local neighbor information aggregation andmeta-path-based

interaction prediction to learn the comprehensive represen-

tation of users and items. MCRec [18] introduces meta-path-

based context to enhance interaction modeling. NeuACF

[11] adopts various meta-paths to extract indirect interaction

information embodied in the HIN, after which the informa-

tion is fed into a neural network-based model to make rec-

ommendations. As inaccurate information extractionmay be

caused due to the separate modeling of users and items in

meta-paths, an embedding model HueRec [28] has been

proposed to map users and items into a unified embedding

space based on the common characteristics of all meta-paths.

Recently, HetNERec [21] transforms the original HIN into

multiple heterogenous co-occurrence networks and designs a

regularized matrix factorization model to perform the rec-

ommendation. Jin et al. [22] propose GraphHINGE to

enhance the latent representations of nodes in the HIN

through modeling the interaction information of their intra-

metapath and inter-metapath neighborhood based on a con-

volutional framework. HAF [23] utilizes meta-graph to

capture similarity between users and items guided by various

semantics and employs a ‘‘matrix factorization ? factor-

ization machine’’ framework to perform the feature fusion

for the recommendation. Later, Xie et al. [24] add an atten-

tive Bi-LSTM module to learn the embeddings for meta-

graph instances and further incorporated into the rating

prediction.

In summary, the design of existing models can be seen

as a combination of simply initialized features and complex

learning architecture. For clarity, ‘‘Simply’’ refers to

characterizing the node feature by less-informative meth-

ods, i.e., standard normal initialization, Xavier initializa-

tion, or meta-path-based features. ‘‘Complex’’ means that

the learning architecture consists of multiple components

or sophisticated design; e.g., a parallel learning design that

neighborhood-based recommendation is combined with a

meta-path-based interaction prediction model [20, 28] or a

hierarchical aggregation design that object-level aggrega-

tion is followed by type-level aggregation [59]. However,

the potential of combining carefully designed feature ini-

tialization and relatively simple learning mechanism has

not been explored so far since an effective initialization

strategy is also capable of capturing the abundant infor-

mation embodied in the HIN. Besides, semantic relations

represent different motivations behind interaction behavior,

so it is necessary to design a method to learn the impor-

tance of various motivations for an accurate prediction.

These issues have motivated us to explore the design of

embedding a learning algorithm and information fusion

mechanism in the recommendation model with the HIN.

3 Problem definition

In this section, we begin with an introduction of notations

and basic concepts used in our model. For convenience, we

list some symbols and their descriptions in Table 1. Then

we discuss the definition of top-N recommendation.

Definition 1 A heterogeneous information network [37] is

defined as a graph G = (V,E) that is composed of a set of

nodes V with the corresponding edge set E. Here, a node

type mapping function f n : v ! o and an edge type map-

ping function f e : e ! r define the type of nodes and edges.

O and R are the set of node types and edge types, respec-

tively, satisfying joj þ jrj[ 2.

Definition 2 A meta-path [30] is a node sequence con-

nected by multiple relations that portrays specific semantic

relations between entities. Formally, a meta-path p can be

written as p ¼ s1
r1!s2

r2! � � � rl�1! sl, with si representing the

type of node i.

In Fig. 1(a), we present an example of HIN which

consists of multi-type entities (e.g., Users (U), Items (I) and

Brands (B)) and various interaction relations. Specifically,

we are interested in meta-paths, for example, the meta-path

User–Item–User (U–I–U) shows that two users both bought

the same item, and the meta-path User–Item–Brand–Item–

User (U–I–B–I–U) implies that two users both purchased

items belonging to the same brand.

Definition 3 The commuting matrix is calculated based on

meta-path. Given a meta-path P ¼ s1s2 � � � sl,Asisj is the

adjacency matrix between type si and sj, the commuting

matrix is defined as C ¼ As1s2 � As2s3 � . . . � Asl�1sl .

Heterogeneous collaborative filtering. In this study,

the recommendation problem is translated into predicting

the probability of user–item interaction with HIN. Given

the heterogeneous information network G and user–item

interaction matrix R, the goal is to generate a ranked item

list for each user based on predicted interaction probability.

The implicit user–item interaction matrix R can be defined

as:

Neural Computing and Applications

123



ru;v ¼
1;
0;

�
ifuseruinteractedwithitemv

otherwise
ð1Þ

where m and n denote the number of users and items,

respectively. Then the user–item interaction with various

side information can be modeled as a corresponding HIN

G = (V, E), where V ¼ Vu [ Vi, and Vu, Vi stand for the

set of users and items, respectively.

4 Methodology

The main idea behind our methodology is the design of a

FHetCF framework that involves a feature-enhanced

learning module to fully exploit the different information

embodied in HINs and a fusion mechanism to integrate

information for recommendation prediction. The overall

Item 1

Brand 1

User 1

User 2

User 3

Item 2

Item 3

Brand 2

User 1

User 2
User 3

Co-purchase Relation

(a) (b)

Fig. 1 a A HIN contains various

entities (users, items, brands)

and the corresponding

relationships between the

entities. b An example of

homogeneous network extracted

by User–Item–User meta-path

Table 1 Commonly used

notations in the paper
Notations Descriptions

Gi ¼ ðV ;EÞ A network/graph

A Adjacency matrix

C Commuting matrix

P ¼ fp1; p2; . . .; ptg A set of meta-paths

Vu A set of users

Vi A set of items

u, v Number of users and items

n Number of nodes in a network

R 2 Ru�v User-item interaction matrix

ui User i

vj Item j

sk The type of node in the HIN

rk Relation between two types of nodes in the HIN

ak The attention weight

ndi Node i in the HIN

eij An edge between node i and j

wij The weight of edge eij

si Latent representation of node i

Wibi Learnable convolution kernel and bias of ith layer in CNN

Wi; bi Learnable weight matrix and bias of ith layer in MLP

Ep
i ; e

p
i A latent variable matrix, vector based on meta-path p

L Loss function

# Learnable model parameters

expðÞ Exponentiation

rð�Þ Some activation functions

* Convolution operation
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structure is shown in Fig. 2. First, based on the constructed

HIN, we use multiple symmetric meta-paths to capture

semantic relations between users (or items) and obtain a set

of user–user (or item–item) sub-networks (Fig. 2 (1)).

Second, we introduce an embedding learning module to

generate latent representations for users and items. Partic-

ularly, a feature initialization strategy is proposed to

encode spatial and semantic relation into node features, and

an MLP model is built for consecutive embedding learning

(Fig. 2 (2)). After that, we aggregate information through a

well-crafted attention mechanism at path level (Fig. 2 (3)).

Finally, the model obtains the final prediction (Fig. 2 (4)).

The details of the architecture are illustrated in the fol-

lowing subsections.

4.1 Homogeneous Sub-network Construction

Heterogeneous nodes and links in the HIN provide rich

auxiliary information on users and items that reveals the

user’s implicit preference (or item’s hidden characteris-

tics). For example, as depicted in Fig. 1(a), User 1 and

User 3 purchased different items; however, since Item 2

and Item 3 both belong to Brand 1, this information implies

that the two users might have a common preference for the

specific brand (an implicit co-occurrence).

Since the main focus is to obtain latent representation

for users and items in the recommendation task, we can

explore the HIN by translating original rich semantics to

user–user relationships or item–item relationships [7, 12].

In the paper, symmetric meta-paths are utilized to capture

various semantic relations between two users (or items)

from the HIN. The symmetric meta-path is defined as

p ¼ nd1
r1!nd2

r2! � � � rl�1! ndl, where nd1 and ndl share the

same node type. The extracted information can be trans-

formed into user–user relationships or item–item relation-

ships under the specific semantic, and it can be formed as a

homogeneous sub-network (shown in Fig. 1b). When uti-

lizing multiple meta-paths, we can obtain as a result a set of

weighted homogeneous networks Gh ¼ fGpiðVi;Ei;wijÞg,
where pi denotes different meta-paths, ðVi;EiÞ stands for

the set of nodes and edges in Gpi with oj j ¼ rj j ¼ 1. wij

represents the weight of edge eij 2 Ei, which is defined by

the number of paths between nodes i and j.

4.2 Feature-enhanced embedding learning

We introduce an embedding learning module based on the

generated homogeneous sub-networks in this section. In

this paper, we aim to explore a different paradigm for

building a HIN-based recommendation model. The core

idea of a designed learning module is to maintain the

information of heterogeneous relations via feature charac-

terization and combine it with a neural embedding method.

4.2.1 Feature initialization strategy

To define an effective feature initialization strategy, we

believe the key is to properly incorporate useful informa-

tion about HIN into the model. FHetCF incorporates sev-

eral encoding methods to leverage semantic and spatial

correlation that are described as follows:

4.2.1.1 Semantic encoding The generated sub-networks

portray the user–user (or item–item) relationships under

1. Homogeneous sub-networks 
construction

2. Feature Initialization 3. Embedding learning 
& Fusion

4. Prediction

User(U) Item(I) Category(C) Brand(B)

1D-CNN based 
attention

Two-layer MLP

User meta-paths

Item meta-paths

Items’ compact 
representation

Users’ compact 
representation

Aggregation

U-I-U

U-B-I-B-U

I-B-I

I-U-I

Target 
user-item 

pair

1D-CNN based 
attention

user/item embedding
spatial feature
semantic feature

…

…

…

…

…

…

…

…

Fig. 2 The schematic demonstration of the FHetCF
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specific semantics; thus, it is natural to extract semantic

correlation between users (or items) for feature character-

ization. In FHetCF, we leverage HeteSim [60] to develop

semantic encoding. HeteSim is a path-constrained method

that calculates the similarity between two entities in

heterogeneous networks. We take the symmetric odd-

length relevance path to define the HeteSim measure.

Given two related nodes nd1 and ndl, the relevance path p

in the heterogeneous network is defined as

nd1
r1!nd2

r2! � � � rl�1! ndl, where ri is the relation between

nodes. When p is odd-length, the path can be decomposed

into two equal-length paths pl ¼ nd1nd2 � � � ndmid and

pt ¼ ndmidndmidþ1 � � � ndl, in which ndmid is the middle

node of the path p. Thus, the similarity between nodes nd1
and ndl along the path p is defined as:

HeteSim s1; sljpð Þ ¼ HeteSim s1; sljpl; ptð Þ ð2Þ

Furthermore, we define Xsisj is the normalized form of

Asisj , which is also the transition probability matrix of

si ! sj. (Ysisj is the transposed form of Xsisj ). Then, the

HeteSim measure can be calculated as: (pt is the inverse

path of pl)

HeteSim s1; sljpl; ptð Þ ¼ Xs1s2 � � �Xsmid�1smid Ysmidsmidþ1
� � � Ysl�1sl

¼ Xs1s2 � � �Xsmid�1smidX
T
smid�1smid � � �X

T
s1s2

¼ QplQ
T
p�1
t

ð3Þ

As we can see, the similarity in fact can be interpreted as

the inner product of two reachable probability matrices Qpl

and QT
p�1
t
ð¼ QT

pl
Þ that nd1 and ndl reaches middle node

along the path pl and pt; respectively. According to the

normalization process described in Eq. (4), we obtain the

similarity vector matrix Mse ¼ ðmse
1 ;m

se
2 ; . . .;m

se
n Þ

T ;Mse 2
Rn�n to demonstrate the semantic correlation and mi 2
R1�n can be seen as the semantic feature of node i.

Mse ¼
QplQ

T
p�1
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QplQ
T
p�1
t

q ð4Þ

4.2.1.2 Spatial encoding An important property of net-

work data is that nodes are distributed in a multi-dimen-

sional spatial space and are linked by edges. We propose

spatial encoding to capture such correlation information.

For clarity, we consider a function u vi; vj
� �

: V � V ! R

that measures the connectivity between nodes in the sub-

networks. In this paper, we choose u vi; vj
� �

to be the

normalized symmetric weighted Laplacian matrix

Msp 2 Rn�n.

The Laplacian matrix is a popular matrix-form repre-

sentation of a graph, and its effectiveness has been proven

in capturing connectivity information [61, 62]. It calculates

the gradient difference between nodes that can describe the

information flow process in the connected graph from a

structural perspective [63]. Thus, it is a suitable option for

capturing spatial correlation in the sub-networks. For each

sub-network, the weighted adjacency matrix is denoted by
~A ¼ ðaijÞi;j¼1;2;���;n, where n is the number of nodes and aij

denotes the path count. The degree di of node i is calcu-

lated by the equation as follows:

di ¼
Pn
j¼1

aij ð5Þ

The degree matrix D is defined as the diagonal matrix

with the degrees d1; d2; � � � ; dn on the diagonal, and I is the

identity matrix. Then the spatial feature matrix Msp is

defined as:

Msp ¼ I � D�1
2 ~AD�1

2 ð6Þ

4.2.1.3 Aggregation mechanism In order to characterize

semantic and spatial information into node features, we use

the linear combination of semantic feature Mse and spatial

feature Msp to create the initial feature M0 that served as

the input for the embedding learning module:

M0 ¼ c1M
se þ c2M

sp ð7Þ

where c1 � 0 and c2 � 0 are the weights with c1 þ c2 ¼ 1.

For simplicity, we set c1 ¼ c2 ¼ 1=2 in the following

experiments. More complicated aggregation mechanism

will be discussed in the future work. We implement the

defined feature initialization process for all sub-networks.

4.2.2 Neural embedding module

With the characterized feature for each sub-network, we

then learn the latent representation for different semantics.

In our paper, we formulate the learning architecture via the

standard MLP [64] to project nodes to low-dimensional

space and preserve the information. Precisely, given the

initial feature vector Mp
0 generated from the semantic

relation p, the projection process based on a two-layer MLP

can be illustrated as follows:

Lp
0 ¼ Mp

0

Lp
1 ¼ r W1L

p
0 þ b1

� �
Ep ¼ r W2L

p
1 þ b2

� � ð8Þ

where Ep stands for the obtained embedding for users or

items, Wi, bi are the weight matrix and bias for the ith

hidden layer, and rð�Þ is the ReLU activation function

[65].
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Thus, we can obtain a set of latent representations

E ¼ fE1
user;E

2
user; . . .;E

p
user;E

1
item;E

2
item; . . .;E

p
itemg

based on all meta-paths for users and items as depicted in

Fig. 2.

4.3 Meta-path level attention

As different semantics should not be equally important for

the user (or item), simple fusion approaches such as aver-

aging are not suitable for personalized recommendation

with heterogeneous information. Therefore, the nonlinear

weight learning method [19], which is capable of modeling

complex data relations, then becomes a feasible option for

fusing heterogeneous information.

Inspired by the self-attention mechanism [66], we pro-

pose a convolution-based function that learns node-wise

attention [16] on meta-paths. Here we employ the one-

dimensional convolutional neural network (1D-CNN)

[67–70] to obtain a normalized attention score on each

semantic relation. This is seen as an effective method to

derive features from a fixed-length segment. Given the

obtained embedding is a vector with a fixed size, we first

use 1D-CNN to extract the feature as the attention weight

and then perform the normalization using the softmax

function [11]. Finally, the score can be used to aggregate

multiple latent representations.

Specifically, given a node ndi, we have a set of

embedding vectors ei ¼ fe1i ; e2i ; . . .; e
p
i g obtained from P

different semantic paths. 1D-CNN then maps the input into

a real value gi, which denotes the attention score on the ith

meta-path:

gk ¼ r
P

eki �W i þ bi
� �

ð9Þ

where eki is the input embedding vector, Wi is the convo-

lution kernel, and bi is the corresponding offset. ReLU

function is applied as the activation function in our case. �
represents the convolution operation, which is defined as:

eki �W i
� �

m;nð Þ¼
P1
j

P1
l

eki
� �

m�j;n�lð ÞðW
iÞ j;lð Þ ð10Þ

where (m, n) represents the dimension of the convolved

feature of ei �Wi.

Then gi is normalized to get the final weight wi, which

measures how informative the semantic relation is to the

aggregated representation of ui:

ai ¼
exp gið ÞPp
i¼1 exp gið Þ ð11Þ

With the learned personalized weight wi, the final

compact representation si is calculated as:

si ¼
PP
k¼1

akeki ð12Þ

4.4 Prediction and optimization

We treat the collaborative filtering as a binary classification

problem that predicts the likelihood of whether a user will

purchase an item. Then the preference score cpij is calcu-

lated as:

cpij ¼ r sui � svj
� �

ð13Þ

where rð�Þ is the sigmoid function, and sui , svj are the

embedding for user ui and item vj. In the training process, we

adopt the pairwise ranking loss [] for parameters learning,

which could be represented as a likelihood function:

p c; c�j#ð Þ ¼
Q
i;j2c

cpij Q
i;k2c�

1� cpikð Þ ð14Þ

where c and c� are the positive and negative sample set and

# represents the model parameters. We further employ the

negative logarithm of the likelihood function as the

objective function in our model:

L ¼ �
P

i;j2c[c�
pijlogcpij þ 1� pij

� �
log 1�cpij� �

ð15Þ

where pij is the ground-truth label. L is then optimized by

the Adam method [71] in the following experiments.

5 Experimental design

5.1 Datasets

We use two classic datasets to test the performance of our

proposed model: Yelp1 and Amazon.2 The Yelp dataset

contains users’ ratings of local businesses such as hotels

and restaurants collected from the Yelp challenge. The

rating scores range from 1 to 5. The subset version we use

contains 1,286 users and 2,614 restaurants with 30,838

reviews. The Amazon dataset covers users’ rating infor-

mation on products from Amazon. Our experiment chooses

the electronics subset, which contains over 195,000 ratings

across 6,170 users and 2,753 items.

Since we aim to investigate the recommendation per-

formance with implicit feedback data, the explicit inter-

actions are transformed into implicit data by introducing a

binary variable, with 1 indicating that the customer has

rated the item and 0 otherwise. The detailed information is

presented in Table 2. (For clarity, in Yelp dataset,

1 https://www.yelp.com/dataset challenge.
2 http://jmcauley.ucsd.edu/data/amazon/.
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‘reservation’ indicates whether the restaurant takes the

reservation, and ‘service’ attribute is used to indicate

whether the restaurant offers table service.)

5.2 Evaluation metrics

We adopt the leave-one-out strategy [72, 73] for evaluation.

The latest interaction for each user is extracted as the test set

and the remaining data is kept as the training set. For each

item in the test set, we randomly sample 99 items that have

no interaction records with the user as negative samples. In

the evaluation procedure, we predict the probability of

purchasing on the item list that containing the test item and

99 negative items. Items are ranked based on the probability

and the top N will be recommended to the user.

We use hit ratio (HR) and normalized discounted

cumulative gain (NDCG) as the evaluation metrics. The

mathematical definitions are given in Eqs. (15) and (16):

HR@K ¼
P

Hiti@K

N
ð16Þ

NDCG@K ¼ 1

N

XN
i¼1

1

log2 pi þ 1ð Þ ð17Þ

where Hiti@K indicates whether the ground-truth item is in

the truncated list with length K for user i. NDCG@K

measures the ranking accuracy of the recommendation list,

N is the number of users, and pi is the position of the

ground-truth item in the user’s rank list. To ensure the

completeness of evaluation, we test the model performance

with K = 5, 10, 15, and 20 for both metrics.

5.3 Benchmarks

To demonstrate the effectiveness of our proposed model,

we compare FHetCF with some competitive benchmark

models, including:

Non-neural-network methods

Itempop [51], which is a non-personalized method for

recommendation. Items are simply ranked based on the

number of interactions.

BPR [51], which optimizes matrix factorization with

pairwise ranking loss. This is adopted for learning

implicit feedback.

GMF [52], which strengthens the expressive power of the

MFmodel by introducing the nonlinear activation function.

Neural network-based models

CMN [74], which incorporates history interaction and

neighborhood information to enhance embedding

learning.

NeuMF [52], which combines matrix factorization and

multi-layer perception to learn latent interaction between

users and items.

HIN-based method

NeuACF [11], which uses meta-paths to extract different

aspects of interaction from HIN and uses multiple neural

network models to learn the latent representation of users

and items.

HNAFM [2], which employs a deep neural network

architecture with a hierarchical attention layer to learn

users’ preference and items’ characteristic based on

meta-paths. It uses the factorization machine to perform

the recommendation. To apply for top-N recommenda-

tion, we modify its optimization objective as pairwise

ranking loss as in BPR.

LGRec [20], which is designed to exploit different

interactions information embedded in the HIN. The

latent vectors for users and items are obtained through

the combination of representations of direct interacted

neighbors and complex meta-path interactions.

5.4 Experimental settings

Meta-paths used in this study to construct homogeneous

sub-networks are shown in Table 3. The hyper-parameters

setting of our proposed method stays the same for the two

datasets. We tune the hyperparameters using a grid search,

where the batch size and learning rate were searched in

[128, 256, 512, 1024] and [1e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-

Table 2 Dataset statistics

Datasets #Entities #Statistics

Amazon User 6,170

Item 2,753

Category 22

Brand 334

Ratings 195,791

Yelp User 1,286

Item 2,614

Category 3

Reservation 2

Service 2

Star Level 9

Ratings 30,838

Table 3 Meta-paths used in each dataset

Dataset Meta-paths

Amazon UIU, UIBIU, UICIU

IUI, IBI, ICI

Yelp UBU, UBReBU, UBSeBU, UBStBU, UBCaBU

BUB, BReB, BSeB, BStB, BCaB
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2], respectively. Here, we adopt a simple two-layer MLP for

embedding learning with the number of hidden units in the

first and the second layer set to 512 and 64, respectively.

Besides, a two-layer one-dimensional convolution neural

network (1D-CNN) model is used to learn the personalized

preference on meta-paths. Specifically, we set kernel size

and stride to be 1, and the number of filters in the first and the

second layer to 16 and 1, respectively. As for the negative

sample set in training process, we empirically set the nega-

tive sampling rate to 10. We keep the parameter setting of

benchmarkmodels the same as the one stated in their original

paper in our experiment. All experiments are implemented in

Python with Tensorflow [75].

6 Results

6.1 Overall performance comparison

To ensure a fair comparison with the benchmark models,

we test the model performance on different recommenda-

tion datasets. For FHetCF and baselines, we report the

average result of ten time runs on the two datasets in

Tables 4 and 5, respectively.

In terms of HR and NDCG, we can see that our FHetCF

achieves the best recommendation performance on both

datasets and criteria. FHetCF significantly outperforms the

second-best performing method by a large margin.

Specifically, for the Amazon dataset, the relative

improvement over the strongest baseline NeuACF is 2.2%

and 3.57% on average for HR and NDCG, respectively. For

the Yelp dataset, there is an increase of 7.1% in hit ratio

and 11.68% in NDCG on average against second best

performing baselines. These findings verify the effective-

ness of our proposed model. The performance improve-

ment may come from two aspects: on the one hand, the

embeddings generated from the high-quality initial feature

can encode important properties of different types of

nodes; on the other, 1D-CNN-based attention mechanism

can better determine the importance of different semantic

relations.

The performance of Itempop is rather poor on both

datasets and largely falls behind the other benchmark

models. Note that Itempop is a non-personalized method

Table 4 Performance comparison on Yelp dataset*

HR@5 NDCG@5 HR@10 NDCG@10 HR@15 NDCG@15 HR@20 NDCG@20

Itempop 0.2932 0.2011 0.4448 0.2498 0.5365 0.2742 0.6065 0.2907

BPR 0.5309 0.3712 0.6943 0.4222 0.7853 0.4470 0.8404 0.4599

GMF 0.5447 0.3798 0.7135 0.4447 0.7827 0.4562 0.8469 0.4809

CMN 0.5427 0.3809 0.7004 0.4321 0.7863 0.4549 0.8405 0.4677

NeuMF 0.5500 0.3854 0.7199 0.4429 0.7971 0.4611 0.8605 0.4809

HNAFM 0.5591 0.3844 0.7216 0.4373 0.7893 0.4553 0.8227 0.4631

LGRec 0.5580 0.3863 0.7291 0.4420 0.8201 0.4661 0.8763 0.4794

NeuACF 0.5465 0.3882 0.7124 0.4419 0.8039 0.4661 0.8611 0.4797

FHetCF 0.6176 0.4416 0.7893 0.4976 0.8659 0.5178 0.9121 0.5288

Improved ? 10.46% ? 13.75% ? 8.26% ? 11.9% ? 5.58% ? 11.10% ? 4.09% ? 9.96%

*The best and second-best scores are marked in bold and italics, respectively

Table 5 Performance comparison on Amazon dataset*

HR@5 NDCG@5 HR@10 NDCG@10 HR@15 NDCG@15 HR@20 NDCG@20

Itempop 0.1828 0.1167 0.2831 0.1489 0.3684 0.1715 0.4365 0.1875

BPR 0.2847 0.1863 0.4212 0.2150 0.5237 0.2569 0.6022 0.2775

GMF 0.2632 0.1755 0.3929 0.2169 0.4936 0.2430 0.5642 0.2619

CMN 0.2702 0.1777 0.4114 0.2231 0.5123 0.2498 0.5874 0.2675

NeuMF 0.2884 0.1924 0.4273 0.2331 0.5331 0.2619 0.6095 0.2802

HNAFM 0.2248 0.1458 0.3653 0.1910 0.4600 0.2161 0.5321 0.2331

LGRec 0.2737 0.1819 0.4142 0.2271 0.5141 0.2535 0.5902 0.2715

NeuACF 0.3147 0.2097 0.4636 0.2576 0.5677 0.2851 0.6429 0.3029

FHetCF 0.3237 0.2185 0.4747 0.2671 0.5774 0.2943 0.6546 0.3125

Improved ? 2.86% ? 4.2% ? 2.39% ? 3.69% ? 1.71% ? 3.23% ? 1.82% ? 3.17%

*The best and second-best scores are marked in bold and italics, respectively
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that simply recommends the items based on interaction

statistics; personalized preference is completely ignored in

the interaction modeling process. It also can be observed

that GMF and BPR yield much better performance than

Itempop. GMF and BPR are both matrix factorization-

based models that can generate a latent feature for each

user or item that describes preference or characteristics to

facilitate the interaction modeling, thus improving the

recommendation performance.

NeuMF and CMN generally achieve better performance

than the non-neural network models on both the datasets.

The result admits that the neural network has superior

ability in learning latent factors when compared to linear

models. Moreover, NeuMF surpasses the performance of

CMN all the time and perform well on most conditions,

indicating that a combination of the MF and MLP models

fuses linear and nonlinear information and is an effective

approach to modeling complex user–item interaction.

As can be seen from the experimental results, the HIN-

based methods substantially obtain the superior perfor-

mance in most cases among all kinds of baselines. On the

Amazon dataset, the performance gains of NeuACF are on

average 7.39% and 9.12% for HR and NDCG, respectively

(when compared to NeuMF). For the Yelp dataset, LGRec

generally outperforms other models. An intuitive expla-

nation is that HIN-based methods could better capture

diverse auxilliary information and higher-order interaction

patterns hidden in the HINs. Notably, the proposed FHetCF

based on meta-paths is able to effectively integrate rich

semantic and spatial information into interaction modeling.

6.2 Ablation study

6.2.1 Comparison on different initialization strategies

In this section, we implement a comparative analysis of

existing feature initialization strategies based on network

information in HIN-related research and investigate their

performance in recommendation. Common initialization

choices in existing research roughly fall into two classes:

Random initialization: We discuss two commonly used

distributions in the experiment and develop correspond-

ing variants of FHetCF, namely FHetCF-xav for Xavier

initialization and FHetCF-uni for standard Gaussian

initialization. The dimension of random feature vector

is set to be 512.

Meta-path-based feature: We develop variants of

FHetCF using a meta-path-based feature. FHetCF-pc

uses normalized commuting matrix (definition given in

Sect. 3) as the input feature. FHetCF-one is the

unweighted version of FHetCF-pc, with cij [ 0 trans-

formed to cij ¼ 1 in the commuting matrix C.

To ensure a fair comparison under the unified setting,

we exclude strategies such as bag of words [43] and pre-

train techniques [18] in our analysis since these introduce

additional information to obtain the initial feature. Perfor-

mance is compared based on the average score of ten times

run. The experimental results on the two datasets are pre-

sented in Tables 6 and 7.

Table 6 Performance of FHetCF on Yelp with different feature initialization strategies*

HR@5 NDCG@5 HR@10 NDCG@10 HR@15 NDCG@15 HR@20 NDCG@20

FHetCF-uni 0.3159 0.2160 0.4536 0.2604 0.5447 0.2845 0.6107 0.3001

FHetCF-xav 0.4474 0.3058 0.6224 0.3625 0.7161 0.3873 0.7875 0.4042

FHetCF-pc 0.3926 0.2711 0.5672 0.3274 0.6572 0.3512 0.7286 0.3681

FHetCF-one 0.5781 0.4056 0.7451 0.4598 0.8218 0.4801 0.8732 0.4922

FHetCF 0.6176 0.4416 0.7893 0.4976 0.8659 0.5178 0.9121 0.5288

Improved ? 6.832% ? 8.876% ? 5.932% ? 8.221% ? 5.366% ? 7.853% ? 4.455% ? 7.436%

*The best and second-best scores are marked in bold and italics, respectively

Table 7 Performance of FHetCF on Amazon with different feature initialization strategies*

HR@5 NDCG@5 HR@10 NDCG@10 HR@15 NDCG@15 HR@20 NDCG@20

FHetCF-uni 0.1505 0.0956 0.2529 0.1284 0.3353 0.1502 0.4069 0.1671

FHetCF-xav 0.2209 0.1428 0.3487 0.1840 0.4444 0.2092 0.5222 0.2276

FHetCF-pc 0.1957 0.1273 0.3145 0.1655 0.3999 0.1880 0.4743 0.2056

FHetCF-one 0.2991 0.1977 0.4496 0.2462 0.5535 0.2737 0.6316 0.2921

FHetCF 0.3237 0.2185 0.4747 0.2671 0.5774 0.2943 0.6546 0.3125

Improved ? 8.225% ? 10.52% ? 5.583% ? 8.489% ? 4.318% ? 7.526% ? 3.642% ? 6.984%

*The best and second-best scores are marked in bold and italics, respectively
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With regard to random initialization, we can see that

Xavier initialization obtains a much better performance

than the standard Gaussian initialization on both datasets.

As stated in [76], after the standard Gaussian initialization,

the variance of the back-propagated gradients gets smaller

layer by layer, leading to the vanishing gradient problem

during learning. Xavier initialization keeps the same vari-

ance of activations across every layer to prevent gradients

from vanishing. The results of our experiment demonstrate

the effectiveness of Xavier initialization in embedding

learning task.

As for the meta-path-based feature, we can find that

FHetCF-pc largely falls behind FHetCF-one based on

HR@K and NDCG@K metrics. It is also worth noting that

random initialized model FHetCF-xav generally outper-

forms FHetCF-pc. The comparison shows that a normal-

ized commuting matrix might not be a proper way to

encode the feature. The variant FHetCF-one beats all other

variants on the Yelp and Amazon datasets, indicating the

importance of a proper method for characterizing the

feature.

It can be observed that the proposed FHetCF method

yields consistently better recommendation performance

than FHetCF-one. The improvements of FHetCF over

FHetCF-one on the Yelp dataset with regard to HR@K are

6.6, 5.28, 5.18, and 4.55% when K equals 5, 10, 15, and 20,

respectively. Moreover, FHetCF shows a 6.8 to 8%

improvement over the variant on the NDCG@K metric

with different K, demonstrating the generated item list can

approximately reflect a user’s preference.

On the Amazon dataset, the relative improvements over

the FHetCF-one with regard to NDCG@K are 10.37,

8.245, 7.344, and 6.607% (K = 5, 10, 15, and 20, respec-

tively). For the HR@K metric, FHetCF gains a 3.3 to

8.49% improvement over the variant with varying K.

The overall results validate the effectiveness of the

proposed feature-enhanced learning architecture and indi-

cate that encoding the semantic similarity and spatial cor-

relation into the node feature can improve recommendation

performance in comparison with other feature initialization

strategies.

6.2.2 Effect of attention mechanism

To investigate the effect of the proposed fusion mecha-

nism, we implement experiments to compare it with two

commonly used fusion functions. We employ 1D-CNN to

distinguish the importance of different meta-paths (se-

mantics) and model the users’ preference into embedding

fusion. In particular, equal weight and self-attention

mechanisms are chosen to be variant models for compar-

ison, named FHetCF-avg and FHetCF-att, respectively.

The comparison results are shown in Figs. 3 and 4,

respectively.

FHetCF-avg performs the worst of the three models

according to evaluation metrics. The reason for this is that

it treats each type of relation with equal importance and

neglects personalized preference information when mod-

eling the user–item interaction. We observe from Figs. 3

and 4 that FHetCF-att with attention mechanism obtains a

much greater recommendation performance than FHetCF-

avg. For the Yelp dataset, FHetCF-att improves over the

FHetCF-avg by 2.24 to 4.73% and 3.7 to 4.96% on HR and

NDCG, respectively. On the Amazon dataset, the perfor-

mance gains are observed with a minimum improvement of

2.55 and 3.64% on HR and NDCG, respectively. The

comparison indicates the necessity of incorporating per-

sonalized weight into embedding fusion. Our proposed

method acquires the best recommendation performance on

HR@K and NDCG@K.

(a) Hit Ratio (b) NDCG

Fig. 3 Performance of FHetCF on Yelp with different fusion mechanisms
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Considering the Yelp dataset, introducing 1D-CNN

leads to 6.17% and 10.71% improvements on average over

the attention mechanism and equal weight on NDCG@K.

For hit ratio, the improvements of FHetCF over FHetCF-

avg with regard to HR@K are 11.76, 9.24, 6.46, and 4.69%

when K equals to 5, 10, 15, and 20, respectively. The

improvements of FHetCF over FHetCF-att with regard to

HR@K are 6.7, 5.61, 3.24, and 2.41%, respectively.

It can also be observed that on the Amazon dataset, our

proposed fusion mechanism improves by 2.3 and 5.8%

over the attention mechanism and equal weight on HR@K.

For NDCG, the improvements of FHetCF over FHetCF-

avg with regard to NDCG@K are 8.4, 7.24, 6.87, and 6.1%

when K equals 5, 10, 15, and 20, respectively. The

improvements of FHetCF over FHetCF-att with regard to

NDCG@K are 3.36, 2.89, 2.65, and 2.37%, respectively.

The experimental results validate the rationality of our

proposed fusion mechanism and demonstrate the effec-

tiveness of applying 1D-CNN to automatically determine

importance.

6.2.3 Impact of meta-paths

To analyze the impact of meta-paths on the model per-

formance, we compare the performance of FHetCF with

and without meta-paths and run the FHetCF with single

meta-path. In Fig. 5, the results show the benefit of

heterogeneous information embodied in the meta-path. By

comparing the performance on Amazon and Yelp, we find

that more useful heterogeneous information (more meta-

paths) can better enhance the recommendation

performance.

(a) Hit Ratio (b) NDCG

Fig. 4 Performance of FHetCF on Amazon with different fusion mechanisms

(a) Amazon (b) Yelp

Fig. 5 The impact of introducing various meta-paths
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In Fig. 6, for instance, UCICU-ICI refers to we only

utilize the user preference and item characteristic infor-

mation obtained from the UCICU-ICI meta-path to make

recommendation. It can be seen from Fig. 6, UIU-IUI/

UBU-BUB meta-path gets the best performance among all

the meta-paths since it conveys the most important infor-

mation for recommendation which indicates the user-item

historical interaction pattern. Meanwhile, we can also

observe that other meta-paths contain a certain amount of

additional information which is capable of improving the

recommendation performance (as validated in Sect. 6.1).

7 Conclusions

In this paper, we introduce a feature-enhanced embedding

learning model, denoted as FHetCF, for heterogeneous

collaborative filtering. The general idea is to combine an

informative feature initialization strategy with a relatively

simple learning architecture. We first use symmetric meta-

paths to extract various semantic relations hidden in the

HIN and construct corresponding homogenous sub-net-

works. We then design an initialization strategy for which

semantic encoding and spatial encoding are implemented

to characterize the node feature. Further, we design a node-

wise heterogeneous information fusion algorithm that

learns the importance of different semantic relations (meta-

paths) for users and items, respectively. The comparison

experiments and extensive ablation studies show the

superiority of our proposed model over competitive rec-

ommendation methods. Moreover, the results validate that

the proposed architecture design is capable of acquiring

promising recommendation performance.

It is worth noting that we restrict our discussion in this

study to a situation whereby network information is the only

available feature, and the purpose is to discuss how to fully

exploit available information for better recommendations.

Meanwhile, the proposed model can be seen as a general

framework for heterogeneous collaborative filtering, and we

can improve the recommendation performance via a more

comprehensive initialization strategy. For example, future

work can explore different feature encoding methods, such

as shortest path calculation for spatial encoding, or more

information can be added to the strategy, such as node cen-

trality and eigenvector centrality. We can also introduce

methods such as bilinear interaction for feature aggregation.
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