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a b s t r a c t

List recommendation, an approach for recommending a set of items closely related to user preferences,
plays a significant role in improving the user experience and has received growing attention in
recent years. However, most existing models ignore list-level attributes and the heterogeneity of the
interactions between the users and lists when predicting user preferences. In this paper, we propose a
heterogeneous graph neural network list recommendation (HGLR) model to bridge these gaps. First, a
representation learning module based on pre-training techniques is developed to learn the embeddings
of the lists, by encoding textual information and aggregating the features of the constituent items. We
then transform the user–list interaction into a bipartite graph and incorporate the list attributes into
a heterogeneous information network (HIN). Propagation-based embedding learning is subsequently
performed to generate user and list representation based on the message-passing mechanism of the
graph neural network. Finally, an attentive fusion layer is designed to obtain the global representations
for the recommendation. We also develop a new large-scale dataset containing multiple types of
side information to evaluate the list recommendation model. Extensive experiments demonstrate
that our model significantly outperforms state-of-the-art list recommendation methods and achieves
performance gains over 8.96% and 14.59% in Recall and NDCG, respectively, against the strongest
baselines.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, list recommendation (or bundle recommen-
ation) has received growing attention in online services [1–3].
pecifically, compared with conventional recommendation [4–6],
hich is designed for recommending a single item, list or bundle
ecommendation aims to present users with a collection of items
hat coheres around a specific semantic concept (Fig. 1a). By
resenting a variety of carefully designed lists, the search scope
s largely narrowed down, and users can find their desired items
ore efficiently. Thus, list recommendation is an effective way

or businesses to meet the users’ complex interests and improve
heir experience.

Recently, efforts have been made to build list recommender
ystems. Most existing works [7–9] follow a multi-task learning
ramework, in which item and list recommendation models are
rained sequentially or simultaneously. Subsequently, the learned
arameters can be shared to enhance the performance of the
ist recommender system. Lately, it has been proposed to model
he user–list/item interaction and list-item affiliation relations as
raphs. Graph neural network (GNN)-based methods then are
aturally used to perform representation learning for provid-
ng the recommendations [10–12]. Although these techniques
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achieve promising results to some extent, they still suffer from
several limitations:

(1) Drawback of multi-task learning framework: User–item
interactions are commonly much denser than user–list interac-
tions; thus, it is difficult to balance two tasks in a loss function
towards an optimal performance [13].

(2) Lack of consideration for relation heterogeneity: Exist-
ing recommendations approaches predominantly focus on char-
acterizing user–list direct interactions, while neglecting the valu-
able side information that can reveal the heterogeneous interac-
tive relations between the users and lists [14]. For instance, a user
may be attracted to a list that shares the same tag as the lists
they have interacted with. Such preferences cannot be identified
by the traditional interaction modeling method.

(3) Insufficient modeling of users’ limited attention span:
tems in lists usually have varying impacts on decision-making [9]
nd should not be treated equally. Moreover, users have a brows-
ng threshold beyond which users will stop browsing when a
ufficient number of items are explored [15].
(4) Overlook of list attributes: A list has multimodal charac-

eristics, such as titles and main images, which serve as promi-
ent illustrations of the semantics or themes of the list [16];
owever, these important attributes are often neglected in the
xisting studies.
To address these limitations, we propose an end-to-end

eterogeneous graph neural network-based list recommendation

https://doi.org/10.1016/j.knosys.2023.110822
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Fig. 1. (a) Lists in various forms (left) and (b) interaction process in playlist browsing (right).
HGLR) model. The proposed model recognizes that both the
ntrinsic characteristics and constituting items of the list, are
wo key factors for learning the list representations. We gen-
rate list-level features from textual attributes and proposed a
runcated aggregation mechanism to learn the item-level features
hat mimic a user’s limited attention span. Then, we build a
eterogeneous information network (HIN), to capture the com-
lex collaborative signals between the users and lists, except
or the user–list interaction graph. In the HIN the list attributes
re introduced as a distinct node type to reveal latent user–
tem interactions. We utilize the message-passing mechanism
nherited from the GNN methods to fully encode the collaborative
ignals and yield satisfactory embeddings. Furthermore, an atten-
ion network is designed to fuse the embeddings learned from
ifferent interaction patterns, to obtain global representations for
he users and lists. Finally, we utilize a neural-network-based
odule to make predictions. The model is evaluated on a newly
uilt dataset that is much larger than the existing benchmarks,
nd achieves significant improvement over the state-of-the-art
aselines.
The main contributions of this work are as follows:
• We emphasize the importance of including the list-level

properties in list recommendation and built a new large-scale
benchmark dataset, the Netease Playlist for performance evalu-
tion. To the best of our knowledge, Netease Playlist represents
he largest publicly available collection of curated, ready-to-use
enchmark datasets for list recommendation.

• We propose a general framework that can effectively incor-
orate auxiliary information into preference modeling for real-
orld list recommendation. We design a comprehensive learn-

ng module to obtain list representations from list and item
iews. We also leverage auxiliary information to enrich diverse
onnections between users and lists. This is the first study to
ntroduce an attribute-based HIN for representation learning in
list-recommender system.
• Extensive experiments are conducted on the collected dataset

Netease Playlist, and the results show the superiority of the pro-
osed framework over the current state-of-the-art baselines for
ll metrics.
The remainder of this paper is organized as follows. Section 2

eviews the works related to list recommendations. Section 3
efines the problem and briefly describes the dataset. Section 4
rovides a detailed description of the proposed framework. Sec-
ion 5 details the experimental setup. Section 6 presents the
2

results of the performance comparison, ablation study, and anal-
ysis of the effects of the hyperparameters. Finally, we conclude
the paper in Section 7.

2. Related works

As lists are widely adopted by businesses and have become
a popular and an efficient form of recommendation, a line of
research has explored list recommendations. Early attempts [7,9,
15,17] applied a multi-task learning framework in which the user
and user–list recommendation models are trained simultaneously
with shared parameters. He et al. [13] notice the difficulty in
balancing weights among tasks and proposed a single hierarchical
model for list recommendation. Some existing approaches [18,
19] treat the user–item and -list interaction data as sequences
and propose corresponding sequence-aware learning modules to
learn the representations of the users and lists.

Recently, GNN methods [10,12] achieve significant improve-
ments by capturing diverse connections through propagation.
Interaction data are transformed into multiple bipartite [10] or
unified tripartite graphs [12]. Wang et al. [20] add multiplication-
based aggregation to the GNN messaging-passing mechanism to
capture the interactions among neighbors. Vijaikumar et al. [11]
propose adopting a graph attention network (GAT) to distin-
guish the importance of different neighbors. Zhang et al. [21]
design a DT-CDBR framework that introduces dual-target cross-
domain learning to improve the recommendation performance.
Zhao et al. [22] consider user- and list-item interactions as the
global and local views of the user’s intention and proposed a
GNN-based contrastive learning framework, MIDGN, that dis-
entangles and compares different views to obtain fine-grained
representations. Zhang et al. [23] generate multiple heteroge-
neous subgraphs around user–list pairs and utilized graph-level
GNNs to extract the user preferences.

Although user- and list–item interactions are utilized to form
a user–list heterogeneous graph [10–12,21], it is a simple com-
bination of three bipartite graphs that are flawed and could
fail to extract certain semantic relations. For instance, one can
infer potential interests by finding similar users through item co-
purchase relations in conventional recommender systems. How-
ever, in the list recommendation scenario, this inference fails
because a single item cannot represent the properties of a list. Ex-
isting studies based on available interactions cannot cover diverse
collaborative signals in the absence of list-level attributes.
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During the examination of existing studies on list recommen-
dation, we find another, perhaps more prominent, limitation: the
evaluation of existing methods is excessively performed on only
a few public benchmarked datasets. However, the limited scope
of these datasets leads to several issues. (1) Because the largest
public benchmark contains only 18,528 users, 22,864 lists, and
123,628 items, it is questionable whether the existing models can
be generalized to untested large-scale datasets. (2) New models
are proposed only when they exceed the baselines on these
datasets, which might result in architectural overfitting [24,25].

Motivated by these caveats, in this study, we propose a novel
architecture that can efficiently leverage auxiliary information for
real-world list recommendation and construct a new large-scale
evaluation dataset, containing various list-level information, for
performance evaluation (e.g., list descriptions and genres).

3. Problem definition and dataset

User–list interaction description: The interaction behavior be-
tween users and lists can be interpreted as a sequential process.
User’s attention is first attracted by the overall theme (attributes)
of a list; then, the user interacts with the items within the list,
and finally, a decision is made based on the degree of satisfaction.
Hence, it is necessary to include both the list-related attributes
and item information in the recommendation. An illustration of
this process regarding a playlist is shown in Fig. 1b.

Problem definition: We use U = {u1, u2, . . . , un1} , L = {l1, l2,
. . . , ln2} , and V = {v1, v2, . . . , vn3} to denote the set of users,
ists and items, respectively. The user–list and user–item inter-
ction data are expressed as Xn1×n2 = {xul|u ∈ U , l ∈ L} and
n1×n3 = {yuv|u ∈ U , v ∈ V }, respectively. Each list can be

described by a set of items following the display order l∗ =

v
l∗
1 , v

l∗
2 , . . . , v

l∗
|l∗|

}, where |l∗| is the length of l∗. Thus, we can
btain the list-item affiliation matrix Zn2×n3. The attributes of the
ists are denoted by A = {A1, A2, . . . , An2}, where A∗ represents
he attribute information of each list. Our goal in this study is to
uild a model F to predict the list that the user will most likely
nteract with based on the given information:

u∈U , l′u = argmax
l∈L

F (u, l|X,Y , Z,A) (1)

Dataset description: To overcome the limitations of the exist-
ing benchmarks, such as the availability of large-scale datasets
and list attributes, we construct a new list recommendation
dataset by collecting data from Netease Cloud Music, a popular
music-streaming platform based in China that has attracted over
800 million registered users since its launch [26]. Our dataset
comprises information extracted from this platform, covering
data up to December 2021. Ultimately, we obtain 14,833 users,
195,283 lists, 3,693,730 songs, 1,469,835 user–list interactions,
and 7,695,867 user–song interactions. Notably, existing datasets
do not contain all the data required for modeling, such as textual
information. Thus, we also retrieve the important and common
characteristics of the lists, including the title, description, and
genres (or tags).

To ensure the completeness of the experiments, we follow
the processing procedure in [9] and obtain a denser dataset in
which we filter out the users and lists that appeared less than 25
times. The detailed statistics for the two datasets are presented
in Table 1.

4. Methodology

In this section, we introduce the proposed HGLR model, which
falls into four consecutive stages (Fig. 2): First, a list represen-
tation is generated by combining the list- and item-level em-
beddings, which are learned directly from textual information
3

and by aggregating the features of the constituent items. Subse-
quently, based on the user–list interaction graph and constructed
HIN, we develop an embedding learning mechanism inspired by
graph convolutional networks to update user and list representa-
tions, by capturing diverse collaborative signals. In the following
section, the user and list representations are fused into global
representations using the designed attentive layers. Finally, a
neural prediction module is adopted to provide recommendations
using global user and item representations.

4.1. List representation learning module (Stage 1)

For the first stage of HGLR, a general learning module is care-
fully designed to consider the intrinsic properties of the lists and
users’ limited attention span to better model the list characteris-
tics. Specifically, we propose a textual feature extraction method
based on pre-training models to learn list-level characteristics
and a truncated attention layer to aggregate the item-level fea-
tures from the constituent items.

4.1.1. List-level features: leveraging text embeddings
Textual attributes contain intuitive information that can reveal

the main topic of a list [16,27]. We collect the titles and descrip-
tions of each list and apply the BERT [28] model to learn the
concept embeddings of the lists.

We first remove stop words from the raw text and truncate
the list descriptions to 510 words (title information remained
unchanged). We then classify the list titles based on language
and adopted pre-trained BERT-based models [29] with a mean
pooling strategy to encode titles and descriptions. Subsequently,
the title embeddings t and description embeddings d for the
ists are obtained. To learn an aggregated list-level feature from
he textual embeddings lt , we adopt a neural fusion layer as
ollows:

t = W t (αt + βd) + bt , (2)

where α and β are learnable parameters deciding the weights for
titles and descriptions, respectively, and W t and bt represent the
learnable weight matrix and bias for the projection.

4.1.2. Item-level features: leveraging user–item interaction
Items within a list can affect user preferences; therefore, it is

important to consider the characteristics of the list items when
representing a list. We propose using pre-training techniques,
such as MFBPR [30], to learn the initial representations of the
items from user–item interactions. Inspired by [15], we hypoth-
esize that only the top N items in the list play an important
role in the users’ decision-making processes because the attention
span is limited. Besides, a list may contain numerous items that
may affect the distinguishing ability of the attention mecha-
nism. Hence, we design a truncated ‘‘attention’’ layer to generate
item-level features, lp as follows:

lp = LeakyReLU

⎛⎝ 1
|Nl|

∑
j∈Nl

W pvj + bp

⎞⎠ , (3)

where Nl represents the top N items in list l, vj is the pre-trained
item representation of the item j, W p is a trainable transforma-
tion matrix, and LeakyReLU(·) is an activation function. In the
proposed module, the attention mechanism is implemented by
manually setting the attention span. A sensitivity analysis of Nl is
presented in Section 6.4.
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Table 1
Description and statistics of the Netease Playlist dataset (Netease for short).

Statistics

Netease-Sparse Netease-Dense

# User 14,833 8,346
# List 195,283 10,871
# Song 3,693,730 1,005,884
# User-List 1,469,835 838,640
# Average list interaction 99.09 100.48
# User-List sparsity 0.051% 0.92%
# User-Song 7,584,962 6,319,668
# Average song interaction 511.38 757.21
# User-Song sparsity 0.014% 0.08%
# Max list size 16,151 10,000
# Min list size 1 1
# Average bundle size 178.4 196.72
# Text information (title, description) 195,283 instances 10,871 instances

# Genre type 78
Fig. 2. Overall framework of the HGLR.
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.1.3. Gated fusion module
The learned list- and item-level embeddings can be added up

sing various techniques such as concatenation [31,32], summa-
ion [33], and element-wise product [34]. However, these tech-
iques are not suitable in our scenario since items within the list
an also reflect the overall theme of the list, which may overlap
ith the list-level features. The aggregation should be able to
emove the redundant information.

To address this challenge, we adopt a gated fusion method
o eliminate overlapping features, which can be described as
ollows:
f = tanh

(
W f

[
lt ⊕ lp

]
+ bf

)
g = sigmoid

(
W g

[
lt ⊕ lp

]
+ bg

)
l(0)c = g ⊙ f + (1 − g) ⊙ lt

(4)

here W ∗ and b∗ denote trainable weight matrices and vectors,
espectively, ⊙ denotes the element-wise production, f stands for
he learned feature that contains the overall characteristics of the
ist, g is the element-wise weight vector serving as the gate, and
 b

4

(0)
c is the fused representation prepared for a propagation-based
mbedding learning module.

.2. Propagation-based embedding learning (Stage 2 & 3)

The goal of the propagation-based embedding learning module
s to learn the latent representations for the users and lists from
ifferent interaction patterns. Specifically, we propose bipartite-
nd HIN-view information propagation layers to embed direct
nteraction information and reveal implicit diverse interacting
elations.

.2.1. user–list bipartite graph learning
The user–list interaction data are expressed by a bipartite

raph, G1 = (V1, E1), where V1 refers to the set of users and lists,
nd E1 denotes the set of connections between the users and lists.
o capture the user preferences and interactive characteristics of
he lists for the recommendation tasks, we build a propagation-
ased embedding propagation layer between the users and lists.
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Fig. 3. Illustration of the HIN.
he embedding update rules for the user ui and list lk can be
ormulated as follows:

l+1
b,i = σ

⎛⎝Wl+1
1 ×

⎛⎝ul
i +

1
|Nui|

∑
k∈Nui

l lk + bl+1
1

⎞⎠⎞⎠ ,

l+1
b,k = σ

⎛⎝Wl+1
2 ×

⎛⎝l lk +
1

|Nlk|

∑
k∈Nlk

ul
i + bl+1

2

⎞⎠⎞⎠ ,

(5)

where ul+1
i and l l+1

k ∈ denote the updated embedding of the user
i and list lk, respectively, on the (l+1)th layer. Wl+1

1 and Wl+1
2 are

he learned weights in the l+ 1 step. bl+1
1 and bl+1

2 are the biases
n the l+1 step. Nui represents the lists subscribed by the user ui,
lk stands for all the users who subscribed lk. LeakyReLU(·) is used
s the activation function. Specifically, u0

b,i = u(0)
c and l0b,k = l(0)c ,

here u(0)
c is a randomly initialized embedding for the user ui,

nd l0b,k is obtained from the learned l(0)c .

.2.2. user–list-attributeHIN learning
To capture the implicit connections between the users and

ists, we first generate a user–genre interaction graph using ma-
rix multiplication based on the user–list interaction and list-
enre affiliation information. Next, we incorporate the user–genre
elation into user–list interactions to build a complete HIN [14].
ubsequently, diverse interactions guided by various meta-paths
an be identified [35]. For instance, according to Fig. 3, we can
btain the neighbor set of the user u1 through the meta-path
GUL (NUGUL (u1) = {l3}), which is inaccessible in a bipartite
raph (the bipartite neighbors are l1 and l4).
To incorporate the newly obtained neighborhood information

nto the representation learning, we adopt a restricted message-
assing layer to aggregate the neighbor information as follows:

p∗

h,i = LeakyReLU

⎛⎝W 3(u0
h,i +

1⏐⏐Np∗

u
⏐⏐ ∑

k∈N
p∗
u

lk) + b3

⎞⎠ , (6)

p∗

h,k = LeakyReLU

⎛⎜⎝W 4(l0h,k +
1⏐⏐Np∗

l

⏐⏐ ∑
i∈N

p∗
l

ui) + b4

⎞⎟⎠ , (7)

where up∗

h,i and lp∗

h,i denote the aggregated embeddings based on
the neighbors generated by the meta-path p∗, with l0h,k = u(0)

c

and u0
h,i = l(0)c , respectively. Np∗

u and N
p∗

l are the neighbor sets
of the obtained users and lists, respectively, guided by the meta-

paths. W ∗ and b∗ represent the learnable weight matrix and

5

bias, respectively. Notably, the size of the neighbor set is limited;
hence, we set a threshold b and sample the neighbors based on
the path-count value [36].

4.2.3. Attentive fusion layer
Given the bipartite graph and a set of meta-paths {p1, p2, . . .

, pt}, we can obtain the corresponding latent representations
{ub, u

p1
h , up2

h , . . . , upt
h } and {lb, l

p1
h , lp2h , . . . , lpth } for the users and

lists, respectively. It should be noted that different interactive
patterns are not equally important when reflecting the users’
global preferences and overall characteristics of the lists. We
apply an attention network to fuse the embeddings through
dynamic weight learning.

ug = α1 · ub +

t+1∑
i=2

αi · u
p(i−1)
h , (8)

lg = β1 · lb +

t+1∑
i=2

βi · l
p(i−1)
h , (9)

where ug and lg are the global representations of the users
and lists, respectively. αi and βi are the weights learned by the
attention network.

α1 = gT
u tanh (Wuub + bu) , αi = gT

u tanh
(
Wuu

p(i−1)
h + bu

)
, and

αi =
exp (αi)∑t+1
n=1 exp (αn)

, (10)

β1 = gT
l tanh (Wllb + bl) , βi = gT

l tanh
(
Wll

p(i−1)
h + bl

)
, and

βi =
exp (βi)∑t+1
n=1 exp (βn)

, (11)

where W ∗ is the weight matrix, b∗ is the bias vector, and g∗ is
the learnable projection vector. The Softmax function is utilized
for normalization, and we employ tanh as the activation function.

4.3. Prediction and training (Stage 4)

The estimated preference score r̂ul is calculated using the
user global representation ug and list global representation lg .
In line with [8,37], we adopt both concatenation and element-
wise product to make the prediction. The element-wise product
captures the collaborative signals embedded in the interaction,
whereas a concatenation operation is used to avoid information
loss.
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6

N
N

Concatenation: A neural transformation module is applied to
learn the corresponding predictive factors from the concatenated
representation.

h(0)
1 = ug ⊕ lg ,

h(1)
1 = W (0)

1 h(0)
1 + b(0)

1 ,

· · ·

r1 = W (l)
1 h(l)

1 + b(l)
1 ,

(12)

here r1 denotes the predictive factor generated from the con-
catenation ⊕, and W (∗)

1 and b(∗)

1 are the learned weight matrix
and bias, respectively.

Element-wise product: Initially we adopt two MLP (Multi-
layer Perceptron) layers to separately transform the representa-
tions of the users and lists, and perform the element-wise product
as follows:

h(0)
2,u = ug , h

(0)
2,l = lg ,

(1)
2,u = W (0)

2,uh
(0)
2,u + b(0)

2,u, h
(1)
2,l = W (0)

2,l h
(0)
2,l + b(0)

2,l ,

· · ·

2,u = W (l)
2,uh

(l)
2,u + b(l)

2,u, r2,l = W (l)
2,lh

(l)
2,l + b(l)

2,l,

2 = r2,u ⊙ r2,l (13)

here ⊙ denotes the element-wise product operation, r2 stands
or the subsequently obtained predictive factor, W (∗)

2,∗ is the lear-
ed matrix, and b(∗)

2,∗ is the bias vector. Specifically, the activation
unctions in the prediction module are removed due to their poor
erformance validated by sufficient experiments.
The preference score r̂ul is then calculated as follows:

ˆul = Wp (r1 ⊕ r2) + bp, (14)

here Wp and bp denote the weight matrix and bias of the
rediction layer, respectively.
To optimize the proposed framework, we utilize a pairwise

earning framework that is extensively used in recommender
ystems [15,30]. We sample a set of triplets R =(
u, l, l′

)
| (u, l) ∈ G1,

(
u, l′

)
/∈ G1

}
for model training. Thus, the

verall objective function can be expressed as:

=

∑
(u,l,l′)∈R

− ln σ
(
r̂ul (Θ) − r̂ul′ (Θ)

)
, (15)

here σ (·) is the sigmoid function, and Θ represents the overall
odel parameters.

. Experimental setup

In this section, we provide a detailed introduction to the
valuation criteria, baselines, and parameter settings used in our
mplementation.

Evaluation criteria: We adopt the widely used leave-one-out
valuation protocol [38] to accelerate the evaluation time in the
xperiments. Specifically, for each user, we randomly sample
ne of their list interactions as a test instance (the remaining
nteractions are used for the training dataset). We then pair
ach test instance with 99 randomly sampled unobserved lists
ith which the user had not interacted, to construct the test
ataset. In addition, we use two metrics: normalized discounted
umulative gain (NDCG) [39] and Recall at 5 and 10 to evaluate
he performance of the top-N recommendations.

Baselines: We compare the proposed HGLR model with seven
tate-of-the-art methods for list recommendation.

• MFBPR [30] is a matrix factorization method optimized us-
ing Bayesian personalized ranking pairwise learning. These

are widely used in conventional recommendation systems.

6

• NGCF [39] is a neural network-based model that captures
the collaborative signals between users and items, based on
a user–item bipartite graph. In this study, we apply this to
the user–list bipartite graph.

• GCN [40] is a recently proposed GNN model based on graphs
for providing recommendations. Similarly, we apply a GCN
to the user–list bipartite graph.

• BR [7] is a two-stage approach for listing recommendations.
In the first stage, it learns the user and item representations
using the matrix factorization under a pairwise learning
framework. In the second stage, the learned parameters
are utilized to represent lists in the MF-based user list
recommendation model.

• DAM [9] adopts a multi-task learning method for list recom-
mendation. User–item and user–list interactions are mod-
eled simultaneously to exploit the knowledge from the
user–item interactions, to enhance list recommendation. In
addition, a deep attention network is designed to aggregate
the item information for list representation.

• BGCN [10] treats the various interactions as three bipartite
graphs and employs the graph convolutional neural network
to learn the user and list representations.

• MIDGN [22] extracts global and local intents from the user
and list-item interactions, respectively, using the GNNmodel
and subsequently adopts a contrastive learning framework
to learn the final representations for the users and lists, and
achieves state-of-the-art performance recently.

Parameters: In list representation learning, the default output
ize of text embedding is 768 [29], and we utilize a single-layer
LP with an output layer of 64 units for projection. The dimen-
ions of the pre-trained latent vector, obtained from the MFBPR,
re set to 64. The embedding size is fixed at 64 in the subsequent
ections. Herein, we provide a general module for learning the
roperties of lists that can be obtained using different methods.
or example, textual embeddings, t and d, can be computed using
RNIE [41] or fine-tuning techniques [42,43].
In bipartite graph learning, the depth of the propagation layer

nd the neural prediction layer are both set to 2, and the hidden
imensions are 64. There are 16 hidden units in the attentive
usion layer. The batch size and learning rate are determined to
e [128, 256, 512, 1024] and [1e−4, 1e−3, 1e−2], respectively,
nd the batch size 1024 and learning rate 1e−3 are selected for
he experiments. The meta-paths used to discover the heteroge-
eous neighbors in the HIN are listed in Table 2. We implement
ur HGLR model based on Pytorch, and the experiments are
onducted in a Windows server with Intel(R) i7-10870H CPU @
.2 GHz (8 cores), 32 G RAM, and GeForce RTX 3070 Ti. The code
s available at https://github.com/Chuan1997/HGLR.

Time complexity: To update the representations of the
sers and lists, the time complexity of HGLR is given by O
(L ∥A∥0 F + LNF 2) × |R|

)
. Here, L stands for the number of propa-

ation layers, F is the dimension of embeddings, ∥A∥0 represents
he number of non-zeros in the adjacency matrix A, N denotes
he number of users and lists, and |R| is the number of meta-
aths used. Notably, the time complexity is the same as that when
mploying multiple GCNs [40] because we consider multiple
eta-paths in our framework.

. Results and analysis

.1. Overall performance comparison

Table 3 summarizes the results of our experiments on the two
etease datasets in terms of the metrics containing Recall @5,
DCG@5, Recall@10, and NDCG@10.
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Table 2
Semantic meaning of the meta-paths designed for datasets.
Meta-paths Semantic meaning

UGL A user is interested in a list that is compatible with the user’s genre preference.
UGUL A user is interested in the list that is subscribed by users who have similar tastes.
ULGL A user is interested in the list which shares the same genre as the observed lists.

LGU A list may be subscribed by a user who is in favor of its genre.
LGLU A list may be subscribed by a user who has subscribed to lists with the same genre.
LUGU A list may be subscribed by a user who is similar to the interacted users.
Table 3
Performance comparison on two real-world datasets.
Method Netease-Sparse Netease-Dense

Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10

BPR 0.241 0.141 0.429 0.200 0.332 0.226 0.473 0.271
NGCF 0.198 0.136 0.305 0.170 0.101 0.063 0.165 0.083
GCN 0.467 0.299 0.664 0.364 0.226 0.150 0.332 0.184
BR 0.574 0.372 0.720 0.420 0.302 0.201 0.457 0.251
DAM 0.586 0.458 0.681 0.486 0.353 0.246 0.473 0.286
BGCN / / / / 0.417 0.283 0.558 0.329
MIDGN / / / / 0.403 0.278 0.549 0.325
HGLR 0.690 0.540 0.791 0.572 0.457 0.328 0.608 0.377
Improved % 17.75 17.90 16.15 17.70 9.59 15.90 8.96 14.59
The proposed HGLR method consistently outperforms all the
aselines by a large margin. Specifically, HGLR exceeds the best
aseline DAM by 17.86%, 17.81%, 16.22%, and 17.71% for Recall
5, NDCG@5, Recall@10, and NDCG@10, respectively, on Netease-
parse. For Netease-Dense, we observe that our model achieves
ecall-based improvements of 6.52% to 6.98% and NDCG-based
mprovements of 10.98% to 11.26%.

Among the item-based recommendation models, the GCN
argely outperforms BPR and NGCF. One possible reason for this
s that the GCN can effectively exploit the rich collaborative
ignals from high-order connections by stacking layers in a bi-
artite interaction graph. However, list recommendation models
uch as BR and DAM achieve higher Recall and NDCG than
tem-based recommendation models on both datasets, suggesting
he necessity of leveraging user–item interactions to enhance
he list recommendation performance. In particular, DAM per-
orms better than BR, indicating that the multi-task learning
ramework with a deep neural network is more effective in
ransferring the information learned from user–item interactions
han a multi-stage approach.

The newly proposed graph-based list recommendation mod-
ls, such as BGCN and MIDGN, perform the best among the
aselines because they explore diverse relations or intents among
sers, lists, and items simultaneously. However, neither BGCN nor
IDGN could be reproduced on the Netease-Sparse. A possible

eason is that BGCN utilizes matrix multiplication to calculate the
verlap intensity between lists, whereas MIDGN needs to create
ultiple extra intent-aware graphs for the user–list interaction
odeling, which is not feasible owing to memory constraints
hen dealing with large-scale datasets such as Netease-Sparse.
lthough MIDGN obtains the highest score in the two existing
atasets [22], its performance on the Netease dataset is rela-
ively poor when compared with BGCN, suggesting that attention
hould be paid to the architectural overfitting in the list rec-
mmendation scenario. Thus, generalization ability should be
mphasized in the further research.
Additionally, we empirically compare the proposed HGLR with

ompetitive baselines in terms of training speed on Netease-
ense, as presented in Table 4. HGLR is the fastest with only an
verage of 3.51 s spent for each training epoch.
In conclusion, HGLR can generate a more comprehensive list

epresentation than the existing solutions, by capturing multi-

evel characteristics, and is capable of exploring heterogeneous

7

connections between users and lists to uncover the users’ com-
plex preferences. In particular, HGLR shows excellent scalability
on large-scale datasets in terms of performance and effectiveness,
whereas the existing methods experience generalization failure
or increased training costs.

6.2. Ablation study

Since HGLR consists of several important design decisions,
such as the inclusion of list-level attributes and HIN-based em-
bedding learning, we conduct an ablation study to investigate
the effects of these modules on the recommendation perfor-
mance. We present the results of HGLR versus multiple variants
in Tables 5 and 6.

Without heterogeneous information network (W/O hete for
short): The HIN is removed in propagation-based embedding
learning in Stage 2, which means we only perform representation
learning on a bipartite graph. The results show that the perfor-
mance worsened in almost all metrics, with a significant drop.
With an increase in data sparsity, the HIN plays an increasingly
important role, with the maximum performance drop reaching
20.09% in NDCG@5 for Netease-Sparse. This demonstrates that
the introduction of genre information can reveal diverse connec-
tions between the users and lists and capture comprehensive user
preferences.

Without item-level features (W/O item for short): The item-
based embedding learning module with truncated attention is
removed when learning the representations of the lists. As shown
in Tables 5 and 6, a sharp drop is observed in all criteria. In par-
ticular, the removal results in average drops of 15.67% and 13.29%
in terms of NDCG on Netease-Sparse and Netease-Dense, respec-
tively. These findings prove that user–item interactions provide
useful information in modeling interactions and that our pro-
posed truncated attention mechanism is effective in summarizing
the characteristics of the list.

Without text embeddings (W/O text for short): We remove
textual information encoding in the list representation learning
in Stage 1. The effect of removing list-level attributes is sig-
nificant. On the Netease-Sparse dataset, both Recall and NDCG
dropped sharply by 9.95% and 11.8%, respectively, on average.
The contribution of textual information varies between the two
datasets. One reason for this is that we use a simpler text feature

extraction technique such that some useful information might
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Table 4
Empirical time comparison on Netease-Dense.

DAM BGCN MIDGN HGLR

Avg. time per epoch 60.94 s 22.32 s 339.38 s 3.51 s
Table 5
Ablation analysis on Netease-Sparse dataset.

Recall@5 NDCG@5 Recall@10 NDCG@10

HGLR 0.6904 0.5397 0.7910 0.5723
W/O hete 0.6045 −12.44% 0.4313 −20.09% 0.7599 −3.93% 0.4729 −17.37%
W/O item 0.6006 −13.01% 0.4551 −15.68% 0.7366 −6.88% 0.4948 −15.66%
W/O text 0.6314 −8.55% 0.4707 −12.78% 0.7613 −3.79% 0.5104 −10.82%
W/O des 0.6750 −2.23% 0.5181 −4.00% 0.7833 −0.97% 0.5528 −3.41%
W/O title 0.6803 −1.46% 0.5266 −2.43% 0.7838 −0.91% 0.5603 −2.1%
R/W add 0.6414 −7.09% 0.4771 −11.59% 0.7742 −2.12% 0.5191 −9.29%
R/W product 0.6173 −10.59% 0.4584 −15.06% 0.7510 −5.06% 0.5003 −12.58%
Table 6
Ablation analysis on Netease-Dense dataset.

Recall@5 NDCG@5 Recall@10 NDCG@10

HGLR 0.4572 0.3280 0.6083 0.3773
W/O hete 0.4329 −4.02% 0.3051 −5.24% 0.5835 −4.08% 0.3538 −6.23%
W/O item 0.3956 −13.47% 0.2831 −13.69% 0.5376 −11.62% 0.3287 −12.88%
W/O text 0.4456 −2.54% 0.3127 −4.66% 0.5939 −2.42% 0.3604 −4.48%
W/O des 0.4493 −1.75% 0.3214 −2.01% 0.5980 −1.69% 0.3687 −2.33%
W/O title 0.4402 −3.72% 0.3148 −4.02% 0.5893 −3.12% 0.3622 −4.00%
R/W add 0.4491 −1.77% 0.3212 −2.07% 0.6017 −1.08% 0.3709 −1.70%
R/W product 0.4497 −1.64% 0.3211 −2.10% 0.6023 −0.98% 0.3690 −2.25%
be unexploited. Future studies should explore more accurate and
advanced methods for encoding text in the recommendation.

Without title or descriptions (W/O title, W/O des for short):
e further investigate the isolated effect of titles and descriptions

n textual information when encoding the list representations.
e observe a relatively small impact on the performance of our
roposed framework, and the decrease is similar for the two
ypes of information. A possible reason for this is that the titles
nd descriptions may have overlapping information; hence, the
emoval effects could be similar.

Replace with simply add or element-wise product (R/W add,
/W product for short): In this case, we replace the gated fusion

module in the list representation learning by simply adding an
element-wise product strategy. The experimental results show
that these two strategies are inferior to the gated fusion method.
On the Netease-Sparse dataset, we observe a significant per-
formance drop compared with HGLR. This proves that gated
fusion is effective in preserving representative characteristics and
removing noisy information.

6.3. Effect of meta-paths

In this subsection, we examine the use of the selected meta-
aths on the two datasets. The empirical results are shown in
ig. 4. For clarity, UGL-LGU means that we use only the in-
eraction information provided by this meta-path to make the
ecommendations.

It can be seen that different meta-paths make different contri-
utions to the datasets. For Netease-Dense, as shown in Fig. 4(b),
he meta-path UGL-LGU obtains the best performance, which
s also superior to the existing state-of-the-art bundle recom-
endation methods. Even the ‘‘worst’’ meta-path UGUL-LGLU
as a better performance than the conventional recommendation
odels. For the Netease-Sparse dataset, the meta-path UGUL-

LGLU becomes the most informative choice and is beneficial for

enhancing the recommendation performance (Fig. 4(a)). =

8

The experiment demonstrates that the chosen meta-paths
contain significant interaction patterns for making a recommen-
dation, proving the effectiveness of the meta-paths used in HGLR.
In addition, the superiority of the single metapath-based HGLR
indicates the rationality of our framework.

6.4. Impact of hyper-parameters

In this section, we focus on two representative hyperparame-
ters of HGLR to discuss their impact on the performance.

6.4.1. Truncated list length for learning item-level features
Fig. 4(a) shows that, the performance of our model increases,

peaks at Nl = 20, and immediately experiences performance
degradation when the truncated list length keeps increasing.
The upward tendency verifies that constituent items reflect the
characteristics of the lists, whereas the downward curve proves
the existence of the limited attention span.

6.4.2. Neighborhood size of HIN
As shown in Fig. 5(b), as the neighborhood size N

p∗
∗ increases

from 50 to 200, the performance of HGLR increases accordingly.
The best performance is achieved at N

p∗
∗ = 200. This pattern in-

dicates that, with a larger neighborhood size, more collaborative
signals can be utilized for interaction modeling, resulting in better
performance.

6.5. Case study

We present a case study based on the Netease-Dense dataset
to validate the superiority of the proposed HGLR, as shown in
Fig. 6. Specifically, we randomly select a user (uid = 3866) and
deliver recommendations from the test dataset. Additionally, we
employ a state-of-the-art BGCN model for comparison. As illus-
trated in Fig. 6, HGLR can correctly predict the target item (lid
1841) as the user’s next interaction, while BGCN suggests that
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Fig. 4. Effects of different meta-paths.
Fig. 5. Hyper-parameters analysis. (a) Optimal number of items when learning item-level representation for the lists. (b) Optimal size of the neighbor sets in the
HIN.
Fig. 6. Case study.
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he item (lid = 1841) should be out of the top-10 list. Specifically,
GCN is confused by similar items like item1372 and item2432.
owever, HGLR is capable of identifying the difference between
he candidate item and target item, thus ranks item1841 in the first
lace.
We further present a visualization example of how the at-

entive fusion layer works in HGLR based on the Netease-Dense
ataset in Fig. 7. We randomly sample one user (uid = 4005)
nd calculate the attentive weights for user3866 and user4005. This
hows that the attentive weights on meta-paths vary depending
n the users and that the U-G-L-based interactions are crucial
or user modeling, proving that the genre attribute is effective in
inding the hidden interaction patterns. Additionally, we visualize
he weights for a randomly selected list, revealing that the orig-
nal U-L interactions are useful for mining the properties of the
ist.
9

. Conclusions

In this study, we focus on a new recommendation paradigm
alled list recommendation, whereby a user’s sophisticated inter-
sts can be expressed through various lists. We propose an HGLR
hat incorporates heterogeneous information into an end-to-end
NN recommendation framework. Specifically, we design a pre-
raining technique-based list representation learning module that
fficiently fused the textual information and item-level features.
o mine heterogeneous relations, we construct a HIN based on
he attribute information to enrich the pairwise interaction be-
ween the users and lists. On the bipartite interaction graph and
onstructed HIN, the embeddings propagated among the inter-
ctions following the message-passing mechanism. An attentive
ayer is proposed for fusion and for obtaining the global repre-
entations of the users and lists. The experimental results verify
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Fig. 7. Example of the designed attentive fusion.
he superiority of the proposed HGLR in terms of both recom-
endation accuracy and scalability. Moreover, ablation analysis
rovides solid support for each carefully designed module.
Based on the experimental results, architectural overfitting

s observed. Although the newly proposed model can obtain
ccurate predictions, significant improvements in the ability to
eneralize to various scenarios have been neglected because of
he limited diversity of the testing dataset. Therefore, we create
high-quality Netease Playlist dataset, which is the largest to
ate in comparison to the existing benchmarks, to facilitate the
esearch community for further exploration and evaluation of the
ist recommendations.

In our future work, we plan to design an adaptive function to
earn the personalized attention span of each user and study an
tem-bundling strategy for high-quality lists.
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